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Abstract

In the empirical study of persuasion, researchers often use a binary instrument to encourage individu-
als to consume information and take some action. We show that with the Imbens-Angrist instrumental
variable model assumptions and the monotone treatment response assumption, it is possible to identify
the joint distributions of potential outcomes among compliers. This is necessary to identify the percent-
age of persuaded individuals and their statistical characteristics. Specifically, we develop a weighting
method that helps researchers identify the statistical characteristics of persuasion types: compliers and
always-persuaded, compliers and persuaded, and compliers and never-persuaded. These findings extend
the ”κ weighting” results in Abadie (2003). We also provide a sharp test on the two sets of identification
assumptions. The test boils down to testing whether there exists a nonnegative solution to a possibly
under-determined system of linear equations with known coefficients. An application based on Green
et al. (2003) is provided. The result shows that among compliers, roughly 10% voters are persuaded. The
results are consistent with the findings that voters’ voting behaviors are highly persistent.
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1 Introduction

In the empirical study of persuasion, researchers are interested in the treatment effect of information on
political choices. Since the decision to consume information is endogenous, researchers often rely on in-
strumental variables (IVs) that capture exogenous variation in that decision making process. Previous re-
search on instrumental variables has focused on the marginal distribution of potential outcomes: the share
of people that take an action under treatment and the share of people that do so under control (Imbens and
Rubin, 1997). However, persuasion involves moving a single person from one kind of action to another.
This paper shows that under certain assumptions, a binary instrumental variable (IV) model can identify
the proportion of individuals who are persuaded, those that are “always persuaded”, and those that are
“never persuaded”, and describe their profiles in terms of pre-treatment covariates.

In a binary IV model of persuasion, the outcome, treatment, and instrument are all dichotomous. There-
fore, we can classify individuals into four persuasion types: 1) always-persuaded, or those who will take the
action of interest regardless of whether receive the information treatment or not; 2) never-persuaded, or those
who will not take the action of interest regardless of the treatment; 3) persuaded, or those who will take the
action of interest only if they are exposed to the information treatment; and 4) dissuaded, or those who will
take the action of interest if they are not exposed to the information treatment but not take the action of
interest if they are exposed to the information treatment. Similarly, we can classify individuals into four
compliance types: always-takers, never-takers, compliers, and defiers.

We first show that in a binary IA IV model with the monotone treatment response assumption (Imbens
and Angrist, 1994; Manski, 1997), the joint distribution of potential outcomes among compliers is point
identified. Note that these two assumptions rule out the dissuaded and the defiers. Therefore, treated
individuals are at least as likely to take action as an individual who is untreated. This implies that the per-
centage of persuaded individuals among compliers is equal to the local average treatment effect (LATE).
Furthermore, under monotone treatment response, the event in which an individual is always-persuaded
is equivalent to the event that an individual would take action without treatment. The latter event only in-
volves the marginal distribution of potential outcomes, which is point identified. (Imbens and Rubin, 1997;
Abadie, 2002, 2003). By applying a similar argument, we can identify the proportion of never-persuaded
among compliers.

Given the ability to identify persuasion types, we can also profile them by using pre-treatment covari-
ates. We begin by extending the κ weighting result in Abadie (2003) to the local persuasion rate developed
by Jun and Lee (2018). Specifically, we show that with the IA IV assumption, we can identify the statistical
characteristics measured by pre-treatment covariates of the locally persuadable, by which we mean those
who are compliers and who will not take the action of interest without being exposed to the treatment.

We then extend this analysis to show that, under the monotone treatment response assumption, we
can characterize the statistical characteristics across persuasion types: always-persuaded compliers, never-
persuaded compliers, and persuaded compliers, by reweighting the data to “find” them. This result extends
the classic κ weighting result in Abadie (2003) because we now can learn the statistical characteristics of
different persuasion types among compliers.

The new identification results follow from the monotone treatment response assumption, which may
not be applicable in situations where researchers are uncertain about the direction of the treatment effect.
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To guide researchers in the applicability of these results, we provide a sharp test on the two sets of identifi-
cation assumptions and a sensitivity analysis. The sharp test closely relates to the result in Balke and Pearl
(1997). The test exploits the fact that a binary IA IV model with monotone treatment response assumption
implies an under-determined system of linear equations with known coefficients. Thus, testing the validity
of the identification assumptions boils down to testing whether there exists a nonnegative solution to the
implied system of linear equations. We implement the test using the subsampling method (Bai et al., 2022).
We also provide a sensitivity result based on the idea in Balke and Pearl (1997). Specifically, since in the
binary IV model, the observed quantity is a linear system equation of the unobserved outcome and com-
pliance types, we can vary the size of the violation of the monotone treatment response assumption among
compliers to see how our point identification results change.

We also provide estimation and inference results. Our identification results show that most of the es-
timands share a similar flavor with the Wald estimands. Therefore, the estimation and inference results
can be obtained by directly applying the classic results in the IV literature. Moreover, they can be easily
implemented in standard statistical software, say, Stata.

Finally, we illustrate the usage of our methods by providing an application based on Green et al. (2003).
Green et al. (2003) conduct a field experiment to use the Getting Out the Vote (GOTV) program to persuade
voters to vote. Specifically, the instrument is the randomly assigned GOTV program. The treatment is
the actual take-up of the GOTV program. The outcome is whether or not voters turn out to vote. The
results show that among compliers, around 10% individuals are persuaded. Moreover, we find that among
compliers, the chance for always-persuaded voters to vote in the last presidential election is the highest, and
the chance for never-persuaded voters to vote in the last presidential election is the lowest. These results
are consistent with the interpretation that voters’ voting behaviors are habit-forming, hence are highly
persistent (Gerber et al., 2003). Moreover, our results show that the voting propensity of those persuaded
is close to those always-persuaded, which is consistent with the finding in Enos et al. (2014) that GOTV
program mobilizes high-propensity voters. Moreover, in Bridgeport, the results show that the chance of
being a Democrat among the persuaded voters and compliers is high, though the estimate is quite noisy.

This paper is closely related to Abadie (2003), who provides results on identifying the statistical char-
acteristics measured by pre-treatment covariates for compliers. We extend Abadie’s κ result by identifying
statistical characteristics measured by the pre-treatment covariates of the persuasion types (i.e., always-
persuaded, never-persuaded, and persuaded) among compliers under a binary IA IV model with an addi-
tional monotone treatment response assumption.

Moreover, this paper also relates to the literature on identifying the distribution of potential outcomes in
an IV model. Prior work proposes three approaches: 1) focuses on identifying the marginal distribution of
potential outcomes among compliers (Imbens and Rubin, 1997; Abadie, 2002; Abadie et al., 2002; Abadie,
2003); 2) makes a rank invariance assumption to point identify quantile treatment effect (Chernozhukov
and Hansen, 2004, 2005; Vuong and Xu, 2017; Feng et al., 2019); 3) constructs sharp bounds on the joint
distribution of potential outcomes (Torgovitsky, 2019; Russell, 2021). In this paper, the identification of the
joint distribution of potential outcomes among compliers depends on the binary nature of the outcome and
the assumption of the direction of the treatment effect.

This paper also closely relates to Jun and Lee (2018). Jun and Lee (2018) provides a set of point/partial
identification results for the persuasion rate and the local persuasion rate under different data scenarios.
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One main focus of this paper is to profile the persuasion types among compliers. Moreover, this paper
provides a sharp test on the assumptions in a binary IV model for persuasion. The sharp test itself also
speaks to a large literature on testing IA IV model validity (Balke and Pearl, 1997; Heckman and Vytlacil,
2005; Kitagawa, 2015; Huber and Mellace, 2015; Wang et al., 2017; Mourifié and Wan, 2017; Machado et al.,
2019; Kédagni and Mourifié, 2020). The sharp test follows the tradition of the literature by using the simple
fact that the observed quantity in the data is a linear combination of the probability of the unobserved
outcome and compliance types. Furthermore, we also provide a necessary and sufficient condition under
which the “approximated” persuasion rate proposed by DellaVigna and Kaplan (2007) equals the local
persuasion rate proposed by Jun and Lee (2018) when there is one-sided non-compliance in the experiment
design. Finally, we also provide a simple sensitivity analysis approach to assess the robustness of the results
for the violation of the monotone treatment response assumption.

The remainder of the paper proceeds as follows. In Section 2, we set up a binary IV model of persuasion.
In Section 3, we define the target parameters. Section 4 presents the point identification results of the dis-
tribution of potential outcomes among compliers. Section 5 presents the identification results that identify
the statistical characteristics of persuasion types among compliers. Section 6 presents the estimation and
inference results. Additional discussions can be found in Section 7. We provide an application in Section 8
and conclude in the final section.

2 Model Setup

In empirical study of persuasion, researchers often collect data on a binary information treatment Ti, and
a binary behavioral outcome Yi. In the GOTV experiment, the outcome of interest is whether or not voters
vote, and the information treatment is the information on the timing and the location of the upcoming
election. Since information consumption is endogenous, researchers often employ an instrument Zi which
creates exogenous variations for an individual’s information consumption decision. In many experiments,
the instrument Zi is also binary. In the GOTV experiment, the instrument is the randomly assigned access
to the GOTV treatment, which contains information on the timing and location of the upcoming election.
Besides the aforementioned variables, researchers also collect pre-treatment covariates Xi ∈ Rk.1 Define
Yi(1) and Yi(0) as the potential outcomes that an individual would attain with and without being exposed
to the treatment, and Ti(1) and Ti(0) as the potential treatments that an individual would attain with and
without being exposed to the instrument. For a particular individual, the variable Yi(t, z) represents the
potential outcome that this individual would obtain if Ti = t and Zi = z.

Formally speaking, researchers make the following assumptions in a binary IV model of persuasion
with the potential outcome and potential treatment notations.

Assumption 2.1. (A Binary IV Model of Persuasion)

1. Exclusion restriction: Yi(t, z) = Yi(t), for t, z ∈ {0, 1},

2. Exogenous instrument: Zi ⊥⊥ (Yi(0), Yi(1), Ti(0), Ti(1), Xi),

3. First stage: P[Ti = 1|Zi = 1] ̸= P[Ti = 1|Zi = 0],

1In what follows, we assume without loss of generality that k = 1.
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4. IV Monotonicity: Ti(1) ≥ Ti(0) holds almost surely,

5. Monotone treatment response: Yi(1) ≥ Yi(0) holds almost surely, and Yi(0), Yi(1) ∈ {0, 1}.

Assumptions 1 to 4 are the assumptions in the IA IV model. In what follows, we use the IA IV as-
sumptions and the LATE assumptions interchangeably to refer to Assumptions 1 to 4. Note that it is not
new to assume the direction of the treatment effect in econometrics literature (Manski, 1997; Manski and
Pepper, 2000; Okumura and Usui, 2014; Kim et al., 2018). This type of assumption is attractive when re-
searchers have strong prior for the direction of the treatment effect. Similar to the IV monotonicity in the IA
IV assumption, this assumption rules out the type of individuals who will take the action of interest if the
treatment switches off but will not take the action of interest if the treatment switches on. In other words,
this assumption assumes that there are no dissuaded people.

As pointed out by Machado et al. (2019), the results in Vytlacil (2002) imply that Assumption 2.1 is
equivalent to the following triangular system model:

1. Yi(t) = 1{Ui ≤ γ(t)}, where γ : T → R is a measurable function with γ(0) < γ(1),

2. Ti(z) = 1{Vi ≤ ν(z)}, where ν : Z → R is a measurable function with ν(0) < ν(1),

3. Zi ⊥⊥ (Vi, Ui, Xi),

where Ui is the latent utility in the outcome process, and Vi is the latent utility in the selection process.

Assumption 2.1 can be applied in cases other than persuasion.2 For instance, researchers are interested
in studying the effect of participating in a job training program on the decision to join a rebellion group
in a fragile state (Blattman and Annan, 2016; Blattman et al., 2017, 2020). Blattman and Annan (2016) con-
ducted an experiment in Liberia that randomly assigned Liberian ex-fighters to a free agricultural training
program. The treatment is the actual participation in the agricultural training program. The outcome of in-
terest is whether or not the Liberian ex-fighters are employed in the legal sector. Here, the IV monotonicity
condition is likely to hold because the program should decrease the cost of the training program for all of
the ex-fighters. The monotone treatment response assumption is likely to hold as the training program is
expected to increase the human capital of ex-fighters, thereby increasing their wage return from getting a
job in the legal sector and raising their opportunity cost of getting a job in the illegal sector.

By Assumption 2.1, we can classify individuals into 9 groups. Since the outcome is binary, the mono-
tone treatment response assumption implies that we can classify individuals as always-persuaded, never-
persuaded, and persuaded. By the IV monotonicity assumption, we can classify the individuals as always-
takers, never-takers, and compliers. The classification is presented in Table 1.

3 Target Parameters

In the empirical study of persuasion, researchers are interested in the “effect” of the information treatment
on individuals’ behaviors. One target parameter proposed by Jun and Lee (2018) is the local persuasion

2Besides the applications mentioned in the main text, the binary IA IV model with monotone treatment response can further be
applied to the study of the persuasion effect of political messages on political behavior in democracy and autocracy (DellaVigna and
Kaplan, 2007; Enikolopov et al., 2011), the persuasion effect of uncensored internet on the views of censorship (Chen and Yang, 2019),
persuading donors to donate (Landry et al., 2006), etc.
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Table 1: Types of Individuals

Yi(0) Yi(1) Ti(0) Ti(1) Persuasion Types Compliance Types
0 0 0 0 Never-Persuaded Never-Takers
0 1 0 0 Persuaded Never-Takers
1 1 0 0 Always-Persuaded Never-Takers
0 0 0 1 Never-Persuaded Compliers
0 1 0 1 Persuaded Compliers
1 1 0 1 Always-Persuaded Compliers
0 0 1 1 Never-Persuaded Always-Takers
0 1 1 1 Persuaded Always-Takers
1 1 1 1 Always-Persuaded Always-Takers

rate:
θlocal := P[Yi(1) = 1|Yi(0) = 0, Ti(1) > Ti(0)].

The local persuasion rate measures the percentage of compliers who take the action of interest if exposed to
the treatment among those who will not take the action of interest without being exposed to the information
treatment.3 In the GOTV experiment, the local persuasion rate measures the percentage of voters who
would vote if they had been exposed to the GOTV program among compliers and those who would not
vote were they not exposed to the GOTV program. Given Assumption 2.1, Jun and Lee (2018) have shown
that θlocal is point identifiable.

Compared to the LATE, the local persuasion rate focuses on a smaller subpopulation. LATE is the
average treatment effect for compliers. The local persuasion rate further conditions on those who will not
take the action of interest without the information treatment (i.e., [Yi(0) = 0]). In the GOTV experiment, the
local persuasion rate conditions on those who will not vote without being exposed to the GOTV program
and those who comply with the experiment design.

We propose three sets of new target parameters in this paper. First, we are interested in the joint dis-
tribution of potential outcomes among compliers. Persuasion involves moving an individual from one
kind of action to another. Therefore, to gain a deeper understanding of the effectiveness of information
intervention, researchers need information about the joint distribution of potential outcomes.

Second, we are interested in the statistical characteristics measured by pre-treatment covariates for the
locally persuadable. Here, the locally persuadable is the subpopulation that θlocal conditions on: [Yi(0) =

0, Ti(1) > Ti(0)]. Learning the statistical characteristics of the locally persuadable can help researchers as-
sess the strength of the study’s external validity. If the statistical characteristics of the locally persuadable
are not similar to the general population, researchers need to be cautious about generalizing their conclu-
sion to the general population.

The third set of target parameters refers to the statistical characteristics of the persuasion types among
compliers (i.e., always-persuaded, never-persuaded, and persuaded). Understanding these characteristics
can help researchers assess the experiment’s success in achieving specific goals and its potential policy out-

3As summarized in DellaVigna and Gentzkow (2010), another popular target parameter in the empirics of persuasion is the per-
suasion rate: θ := P[Yi(1) = 1|Yi(0) = 0]. DellaVigna and Gentzkow (2010) suggests to use an estimand proposed in DellaVigna and
Kaplan (2007) to measure θ: θDK = P[Yi=1|Zi=1]−P[Yi=1|Zi=0]

P[Ti=1|Zi=1]−P[Ti=1|Zi=0] ×
1

1−P[Yi(0)=1] , where researchers use P[Yi = 1|Zi = 0] to approximate
P[Yi(0) = 1]. As pointed out in Jun and Lee (2018), θDK is not a well defined conditional probability. Hence, it does not measure
the persuasion rate for any subpopulation. Moreover, Jun and Lee (2018) show that under Assumption 2.1, θ is not point identifiable.
They instead provide sharp bounds for θ.
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comes. For instance, in the GOTV experiment, researchers aimed to mobilize underrepresented minorities
to vote, so estimating the likelihood of persuaded and compliers being part of this group is crucial. Addi-
tionally, researchers may want to determine the types of voters mobilized, such as their likelihood of being
Democrats. This information can help researchers evaluate the policy impact of the mobilization effort.

4 Identification of the Potential Outcome Distributions for Compliers

In this section, we present the results of the identification of the joint distribution of potential outcomes
among compliers. We first show that in a binary IA IV model with monotone treatment response assump-
tion, the joint distribution of potential outcomes among compliers can be identified from the marginal
distribution of potential outcomes among compliers. We then show that the results can be extended to the
case of a non-binary instrument.

4.1 Identification of the Joint Distribution of Potential Outcomes for Compliers in a
Binary IV Model

As is well known, given the IA IV assumptions, we can point identify the marginal distribution of potential
outcomes among compliers (Imbens and Rubin, 1997; Abadie, 2003; Jun and Lee, 2018). In other words, we
can know the percentage of voters who will vote if they receive the GOTV treatment and the percentage
of voters who will vote if they do not receive the GOTV treatment among compliers. For the sake of
completeness, we restate this classic result in Lemma 4.1.

Lemma 4.1. Assume that the 1 to 4 in Assumption 2.1 hold, then, with binary Yi, the marginal distribution
of potential outcomes conditional on compliers is point identified:

P[Yi(0) = y | Ti(1) > Ti(0)] =
P[Yi = y, Ti = 0 | Zi = 0]− P[Yi = y, Ti = 0 | Zi = 1]

E[Ti | Zi = 1]− E[Ti | Zi = 0]

P[Yi(1) = y | Ti(1) > Ti(0)] =
P[Yi = y, Ti = 1 | Zi = 1]− P[Yi = y, Ti = 1 | Zi = 0]

E[Ti | Zi = 1]− E[Ti | Zi = 0]
,

where y ∈ {0, 1}.

The intuition of the identification results in Lemma 4.1 is the following. To make the discussion more
concrete, let us consider the untreated potential outcome in the GOTV experiment. Among the voters who
are not randomly assigned to the GOTV treatment (i.e., those with Zi = 0), for those who do not receive
the GOTV experiment (i.e., those with Ti = 0), we know that: 1) we observe their untreated potential
outcome, Yi(0); 2) by the IV monotonicity in Assumption 2.1, they are either compliers or never-takers.
Among the voters who are randomly assigned to the GOTV treatment (i.e., those with Zi = 1), for those
who do not receive the GOTV experiment (i.e., those with Ti = 0), we know that: 1) we observe their
untreated potential outcome; 2) by the IV monotonicity assumption, they are never-takers. Subtracting the
two groups then gives us compliers. Similarly, for the treated potential outcome, subtracting a mixture of
always-takers and compliers from always-takers gives us compliers.
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The two estimands in Lemma 4.1 are similar to the Wald estimand in the IA IV model. Consider
the marginal distribution of Yi(1) among compliers, the estimand is equivalent to a Wald estimand with
treatment variable being Ti, instrument being Zi, and the outcome variable being 1{Yi = y, Ti = 1} with
y ∈ {0, 1}. For the marginal distribution of Yi(0) among compliers, it is the negative of the Wald estimand
with the outcome variable being the following indicator variable: 1{Yi = y, Ti = 0} with y ∈ {0, 1}.

The identification results in Lemma 4.1 only use the IA IV assumptions. Remarkably, if we further
assume the treatment response is monotone, we can point identify the joint distribution of potential out-
comes among compliers. In other words, under Assumption 2.1, we can know the percentage of always-
persuaded, never-persuaded, and persuaded among compliers.

Lemma 4.2. Suppose Assumption 2.1 holds, the joint distribution of potential outcomes among compliers
is point identified:

P[Yi(1) = 1, Yi(0) = 1 | Ti(1) > Ti(0)] =
P[Yi = 1, Ti = 0 | Zi = 0]− P[Yi = 1, Ti = 0 | Zi = 1]

E[Ti | Zi = 1]− E[Ti | Zi = 0]

P[Yi(1) = 1, Yi(0) = 0 | Ti(1) > Ti(0)] =
E[Yi | Zi = 1]− E[Yi | Zi = 0]
E[Ti | Zi = 1]− E[Ti | Zi = 0]

P[Yi(1) = 0, Yi(0) = 0 | Ti(1) > Ti(0)] =
P[Yi = 0, Ti = 1 | Zi = 1]− P[Yi = 0, Ti = 1 | Zi = 0]

E[Ti | Zi = 1]− E[Ti | Zi = 0]
.

Here is the intuition behind the identification results in Lemma 4.2. By the monotone treatment response
in Assumption 2.1, we know the following three things: 1) for those who will vote without receiving the
GOTV treatment (i.e., those with Yi(0) being 1), they will also vote with receiving the GOTV treatment (i.e.,
their Yi(1) is also 1); 2) for those who will not vote with receiving the GOTV treatment (i.e., those with
Yi(1) being 0), they will also not vote without receiving the GOTV treatment (i.e., their Yi(0) is also 0); 3)
Yi(1) − Yi(0) = 1 if and only if Yi(1) = 1, Yi(0) = 0, thus, LATE becomes the proportion of mobilizable
voters among compliers.4

Note that we only need the monotone treatment response assumption to hold among compliers for
Lemma 4.2, because we are “solving” the joint distribution of potential outcomes among compliers from
the marginal distribution. However, throughout the text, we maintain the assumption that the monotone
treatment response holds almost surely for simplicity.

5 Profiling Persuasion Types

This section offers results that profile the persuasion types among compliers, in addition to determining
the size of the persuasion effect. We present a series of results that help identify the statistical character-
istics of the locally persuadable (that is, [Yi(0) = 0, Ti(1) > Ti(0)]) as well as the three other persuasion
types defined by the marginal potential outcomes. Next, we provide results that identify the statistical
characteristics of the three persuasion types among compliers as defined in Table 1.5

4We discuss the extension of the identification results in Lemma 4.2 to non-binary outcomes and instruments in Appendix A. The
results are negative for the former and positive for the latter.

5We also extend some of our findings to always-takers and never-takers, see Appendix D.
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5.1 Profiling the Locally Persuadable

Given the IA IV assumption, we can identify the statistical characteristics of the subpopulation defined by
the following event: [Yi(0) = 0, Ti(1) > Ti(0)], i.e., the locally persuadable. We do not directly observe
this subpopulation because it involves potential outcomes and a pair of potential treatments. In the GOTV
experiment, the locally persuadable are those who are compliers and those who will not vote if they do not
receive the GOTV treatment. We formally state the results below.6

Theorem 5.1. Suppose that 1 to 4 in Assumption 2.1 hold. Let g : R → R be measurable such that
E[|g(Xi)|] < ∞, then, E[g(Xi) | Yi(0) = 0, Ti(1) > Ti(0)] is point identified:

E[g(Xi) | Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 0, Ti = 0} | Zi = 0]− E[g(Xi)1{Yi = 0, Ti = 0} | Zi = 1]

P[Yi = 0, Ti = 0 | Zi = 0]− P[Yi = 0, Ti = 0 | Zi = 1]
.

We provide examples of g(Xi) below. For instance, if we choose g(Xi) = Xp
i where p ∈ R+, we can

identify any moments of a covariate Xi that exist. In the GOTV experiment, Xi can be a binary partisanship
variable, indicating whether or not i is a Democrat. Choosing p = 1, we can identify the probability of a
locally persuadable voter being a Democrat. Another example is g(Xi) = 1{Xi ≤ x} with x ∈ R. With
this choice, we can identify the cumulative distribution function of Xi among the locally persuadable. For
instance, if Xi is personal income, we can identify the cumulative distribution function of income among
the locally persuadable voters.

Theorem 3.1 in Abadie (2003) shows that any statistical characteristic that can be defined in terms of
moments of the joint distribution of (Yi, Ti, Xi) is identified for compliers:

E[g(Yi, Ti, Xi) | Ti(1) > Ti(0)] =
1

P[Ti(1) > Ti(0)]
E[κg(Yi, Ti, Xi)],

where κ := 1 − Ti(1−Zi)
P[Zi=0] −

(1−Ti)Zi
P[Zi=1] . Theorem 5.1 strengthens Abadie’s κ by further conditioning on those

with an untreated potential outcome of 0. Thus, a natural question is whether or not we can point identify
E[g(Yi, Ti, Xi) | Yi(0) = 0, Ti(1) > Ti(0)] under the IA IV assumption. The answer is no. To see this:

E[g(Yi, Ti, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]

= E[g(Yi(1)Zi + Yi(0)(1 − Zi), Zi, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]

= E[g(Yi(1)Zi, Zi, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]

= E[g(Yi(1), 1, Xi) | Zi = 1, Yi(0) = 0, Ti(1) > Ti(0)]P[Zi = 1 | Yi(0) = 0, Ti(1) > Ti(0)]

+ E[g(0, 0, Xi) | Zi = 1, Yi(0) = 0, Ti(1) > Ti(0)]P[Zi = 0 | Yi(0) = 0, Ti(1) > Ti(0)]

= E[g(Yi(1), 1, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]P[Zi = 1]

+ E[g(0, 0, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]P[Zi = 0],

where the first equality uses the fact that Ti = Zi for compliers, the fourth equality uses the IV independence
assumption. Due to the presence of E[g(Yi(1), 1, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]P[Zi = 1], which is about

6In Appendix H, we show that we can use the weighting results in Abadie (2003) to derive the same result in Theorem 5.1.
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the joint distribution of potential outcomes, E[g(Yi, Ti, Xi) | Yi(0) = 0, Ti(1) > Ti(0)] is not point identified
with the IA IV assumptions.

Theorem 5.1 can be applied to continuous Yi by defining a new indicator variable, Ỹi = 1{Yi ∈ B},
where B is a measurable set, and a new potential outcome, Ỹi(0) = 1{Yi(0) ∈ B}. The result in Theorem 5.1
holds for Ỹi under the IA IV assumptions in Assumption 2.1. An example of B is: B = 1{Yi(0) ≤ ỹ}. That
is, researchers can identify characteristics measured by Xi of compliers and those with untreated outcomes
less than ỹ.

Since the marginal distribution of potential outcomes among compliers is identifiable, a natural exten-
sion of Theorem 5.1 is to extend the results to the following subpopulations: [Yi(0) = 1, Ti(1) > Ti(0)],
[Yi(1) = 0, Ti(1) > Ti(0)], and [Yi(1) = 1, Ti(1) > Ti(0)].

Proposition 5.1. Assume that 1 to 4 in Assumption 2.1 hold, and let g : R → R be measurable such that
E[|g(Xi)|] < ∞, then, the following conditional expectations of g(Xi) are point identified:

E[g(Xi) | Yi(0) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 0]− E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 1]

P[Yi = 1, Ti = 0 | Zi = 0]− P[Yi = 1, Ti = 0 | Zi = 1]
,

E[g(Xi) | Yi(1) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 1]− E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 0]

P[Yi = 0, Ti = 1 | Zi = 1]− P[Yi = 0, Ti = 1 | Zi = 0]
,

E[g(Xi) | Yi(1) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1, Ti = 1} | Zi = 1]− E[g(Xi)1{Yi = 1, Ti = 1} | Zi = 0]

P[Yi = 1, Ti = 1 | Zi = 1]− P[Yi = 1, Ti = 1 | Zi = 0]
.

By the identical reasoning after Theorem 5.1, we have the following three remarks on Proposition 5.1.
First, the results show that any conditional moments defined by pre-treatment covariate Xi can be identified
as long as the moments are finite. Second, pick g(Xi) = 1{Xi ≤ x} with x ∈ R, the results show that the
conditional cumulative functions are identified. Third, Proposition 5.1 strengthens Abadie’s κ by further
conditioning on the potential outcome. However, by the same token in the discussion before, the power
of Abadie’s κ is not fully preserved here, because we cannot identify g(Yi, Ti, Xi) conditional on the three
subpopulations above.

5.2 Identification: Compliance and Persuasion

An implication of Lemma 4.2 is that we can point identify the statistical properties of always-persuaded,
never-persuaded, and persuaded among compliers. The results follow because the joint distribution of po-
tential outcomes among compliers is point identified under the monotone treatment response assumption
in the binary IA IV model. The results are summarized in Theorem 5.2.

Theorem 5.2 (Compliance and Persuasion). Suppose Assumption 2.1 holds, let g : R → R be measurable
such that E[|g(Xi)|] < ∞, then, the moments of g(Xi) conditional on always-persuaded compliers, never-
persuaded compliers, and persuaded compliers are point identified:

E[g(Xi)|Yi(1) = Yi(0) = 1, Ti(1) > Ti(0)]
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=
E[g(Xi)1{Yi = 1, Ti = 0}|Zi = 0]− E[g(Xi)1{Yi = 1, Ti = 0}|Zi = 1]

P[Yi = 1, Ti = 0|Zi = 0]− P[Yi = 1, Ti = 0|Zi = 1]
,

E[g(Xi)|Yi(1) = Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 0, Ti = 1}|Zi = 1]− E[g(Xi)1{Yi = 0, Ti = 1}|Zi = 0]

P[Yi = 0, Ti = 1|Zi = 1]− P[Yi = 0, Ti = 1|Zi = 0]
,

E[g(Xi)|Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1}|Zi = 1]− E[g(Xi)1{Yi = 1}|Zi = 0]

E[Yi|Zi = 1]− E[Yi|Zi = 0]
.

We now give three remarks for Theorem 5.2. By the identical argument in Theorem 5.1, the conditional
distribution functions of Xi given persuasion types and compliers are also identifiable, because we can let
g(Xi) being g(Xi) = 1{Xi ≤ x} with x ∈ R. Furthermore, for measurable g, the expectations of g(Xi)

conditional on the three subpopulations are also identifiable given the expectation is well-defined. An
implication is any statistical moments of the always-persuaded, never-persuaded, and persuaded among
compliers are identifiable. Thus, this theorem extends the weighting results in Abadie (2003) by further
conditioning on the persuasion types defined by the pair of potential outcomes.

The aforementioned statistics provide significant aid in comprehending the intervention’s impact and
mechanism. To illustrate, consider the GOTV experiment. Theorem 5.2 establishes the identification of the
probability of a complier-persuaded voter being a Democrat. In other words, although GOTV experiments
are not typically partisan ex ante, they can produce partisan mobilization outcomes. For instance, the data
may indicate that among compliers, the likelihood of a persuaded voter being a Democrat is exceedingly
high. If conducted in a swing state, the mobilization experiment could potentially alter the election re-
sults. Furthermore, the results of Theorem 5.2 can facilitate our evaluation of the mechanisms by which
the treatment affects the outcome. In the GOTV experiment, the aforementioned results can be employed
to evaluate the hypothesis that voting is habit-forming (Gerber et al., 2003). We can utilize prior voting
records as a metric for the voting propensity. If the hypothesis in Gerber et al. (2003) is accurate, we should
observe that always-persuaded voters among compliers exhibit the highest voting propensity while never-
persuaded voters demonstrate the lowest voting propensity.7

In addition to Theorem 5.2, there are several other ways to profile voters using observable covariates.
For instance, researchers might be interested in the following quantity: among the compliers and those who
will not vote without being exposed to the treatment (i.e., the locally persuadable), what are the character-
istics of those who will vote with being exposed to the treatment. For example, in the GOTV experiment,
this quantity would be the chance of locally persuadable individuals being a Democrat and will if they are
exposed to the treatment. Due to the monotone treatment response and binary outcome, there are five other
estimands that share a similar flavor with this example. The identifiability of these estimands follows from
the fact that the monotone treatment response assumption implies the identifiability of the joint distribution
of the potential outcomes among compliers. These results are formally stated in Proposition 5.2.

Proposition 5.2. Suppose Assumption 2.1 holds, let g : R → R be measurable such that E[|g(Xi)|] < ∞,
then, the following conditional expectations are identifiable:

E[g(Xi)1{Yi(1) = 0} | Yi(0) = 0, Ti(1) > Ti(0)]

7In Appendix C, we present results that identify the proportion of persuasion types among compliers while conditioning on co-
variates.
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=
E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 1]− E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 0]

P[Yi = 0, Ti = 0 | Zi = 0]− P[Yi = 0, Ti = 0 | Zi = 1]

E[g(Xi)1{Yi(1) = 1} | Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1} | Zi = 1]− E[g(Xi)1{Yi = 1} | Zi = 0]

P[Yi = 0, Ti = 0 | Zi = 0]− P[Yi = 0, Ti = 0 | Zi = 1]

E[g(Xi)1{Yi(1) = 1} | Yi(0) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 0]− E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 1]

P[Yi = 1, Ti = 0 | Zi = 0]− P[Yi = 1, Ti = 0 | Zi = 1]

E[g(Xi)1{Yi(0) = 0} | Yi(1) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 1]− E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 0]

P[Yi = 0, Ti = 1 | Zi = 1]− P[Yi = 0, Ti = 1 | Zi = 0]

E[g(Xi)1{Yi(0) = 1} | Yi(1) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 0]− E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 1]

P[Yi = 1, Ti = 1 | Zi = 1]− P[Yi = 1, Ti = 1 | Zi = 0]

E[g(Xi)1{Yi(0) = 0} | Yi(1) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1} | Zi = 1]− E[g(Xi)1{Yi = 1} | Zi = 0]

P[Yi = 1, Ti = 1 | Zi = 1]− P[Yi = 1, Ti = 1 | Zi = 0]

6 Estimation and Inference

This section provides estimation and inference results for the estimands we proposed in Sections 4 and 5.
Note that the estimands we proposed in prior sections usually take the form of a Wald estimand:

E[ f (Xi, Yi, Ti) | Zi = 1]− E[ f (Xi, Yi, Ti) | Zi = 0]
E[h(Yi, Ti) | Zi = 1]− E[h(Yi, Ti) | Zi = 0]

. (1)

where f and h are measurable functions that map from R to R.8 It is easy to see that the numerator in
Equation 1 is the coefficient of Zi from regressing f (Xi, Yi, Ti) on Zi and a constant, while the denominator
in Equation 1 is the coefficient of Zi from regressing h(Yi, Ti) on Zi and a constant. Therefore, the standard
estimation and inference theory for Wald estimand applies immediately to the current case with i.i.d. data
of (Yi, Ti, Zi, Xi). We can either employ the conventional asymptotic results for hypothesis testing or use
the Anderson-Rubin test which is robust to weak identification. 9 Note that both inferential methods can
be easily implemented in standard statistical software, say, ivreg2 and weakiv in Stata.10

8To provide an example of f and g for the identifiable estimand we introduced earlier, consider E[g(Xi) | Yi(1) = Yi(0) = 0, Ti(1) >
Ti(0)] in Theorem 5.2:

f (Xi , Yi , Ti) = g(Xi)1{Yi = 0, Ti = 1}
h(Yi , Ti) = 1{Yi = 0, Ti = 1}.

9We provide a more detailed discussion on inference issues in Appendix E.
10ivreg2 does not produce a confidence interval for the Anderson-Rubin test, while weakiv does. To see the implemen-

tation in Stata, consider again E[g(Xi) | Yi(1) = Yi(0) = 0, Ti(1) > Ti(0)] in Theorem 5.2. Suppose g(Xi)1{Yi =
0, Ti = 1} is stored as gxy0t1 and 1{Yi = 0, Ti = 1} is stored as y0t1 in Stata. Then, the point estimate and confi-
dence interval can be obtained by: ivreg2 gxy0t1 (y0t1 = z). The Anderson-Rubin confidence interval can be obtained by:
weakiv ivreg2 gxy0t1 (y0t1 = z).
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7 Discussion

In this section, we discuss three points on identification results from previous sections. Firstly, we compare
θlocal with classic estimands. Next, we provide necessary and sufficient conditions for approximated θDK

to equal θlocal under one-sided non-compliance. Additionally, we propose a test for Assumption 2.1, and a
simple method to assess the sensitivity of results to the monotone treatment response assumption.

7.1 Comparison with Existing Estimands

7.1.1 Complier Causal Attribution Rate

The most closely related target parameter to the local persuasion rate is the causal attribution rate, which
measures the proportion of observed outcome prevented by the hypothetical absence of the treatment
(Pearl, 1999). With the presence of a binary instrument, Yamamoto (2012) defines the complier causal attri-
bution rate denoted by pC:

pC = P[Yi(0) = 0|Yi(1) = 1, Ti = 1, Ti(1) > Ti(0)],

which measures the proportion of observed outcome prevented by the hypothetical absence of treatment
among compliers.

One main difference between pC and θlocal is that pC conditions on [Yi(1) = 1, Ti = 1, Ti > Ti(0)] but
θlocal conditions on [Yi(0) = 0, Ti > Ti(0)]. Therefore, a natural way to extend the local persuasion rate is to
define the local persuasion rate on the untreated:

θlocal untreated := P[Yi(1) = 1|Yi(0) = 0, Ti = 0, Ti(1) > Ti(0)].

We can point identify θlocal untreated given Assumption 2.1. The intuition of the identification of θlocal untreated

is that conditioning on compliers implies that Ti = Zi, thus, θlocal untreated = θlocal. We formally state the
result in Claim 7.1.

Claim 7.1. Assume that Assumption 2.1 holds, then, θlocal untreated is point identifiable:

θlocal untreated =
P[Yi = 1|Zi = 1]− P[Yi = 1|Zi = 0]

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]
.

7.1.2 Equivalence between the Approximated Persuasion Rate and the Local Persuasion Rate with One-
Sided Non-Compliance

As summarized in DellaVigna and Gentzkow (2010), one popular estimand in the empirics of persuasion is
the “approximated” persuasion rate θ̃DK:

θ̃DK =
P[Yi = 1|Zi = 1]− P[Yi = 1|Zi = 0]
P[Ti = 1|Zi = 1]− P[Ti = 1|Zi = 0]

× 1
1 − P[Yi = 1|Zi = 0]

.
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As noted in Jun and Lee (2018), θ̃DK is not a well-defined conditional probability. Therefore, θ̃DK does not
measure persuasion rate for any subpopulation.

In this subsection, we present conditions for θ̃DK to equal θlocal in experiments with one-sided non-
compliance, which is empirically relevant in some persuasion experiments. For instance, non-compliance
issues arise in the treatment group of the GOTV experiment in Green et al. (2003).

The results below show that for one-sided non-compliance, θ̃DK equals θlocal under specific conditions on
the distribution of potential outcomes and treatments. If there is one-sided non-compliance in the treatment
group, the two estimands are equivalent if and only if the untreated potential outcome is independent of the
treated potential treatment. If there is none-sided non-compliance in the control group, the two estimands
are equal if and only if the proportion of untreated potential outcome being 0 among untreated potential
treatment being 0 equals the proportion of never-persuaded among the never-takers.

Theorem 7.1. Assume that Assumption 2.1 holds, if there is one-sided non-compliance in the control group,
then θDK = θlocal if and only if P[Yi(0) = 0|Ti(0) = 0] = P[Yi(1) = 0|Ti(0) = 1], if there is one-sided non-
compliance in the treatment group, then θDK = θlocal if and only if Yi(0) ⊥⊥ Ti(1).

These results contrast sharply with the results in Jun and Lee (2018), which state that these two quantities
are equivalent to each other if: 1) Ti = Zi holds almost surely, that is, we are in the sharp persuasion design;
2) Ti ⊥⊥ (Yi(0), Yi(1)); 3) Yi(1) = Yi(0) = 1 for all i, or Yi(1) = Yi(0) = 0 for all i.

7.2 A Sharp Test of the Identification Assumptions

The main identification results in Theorem 5.2 rely on two assumptions: the IA IV assumptions and the
monotone treatment response assumption. These assumptions impose restrictions on individuals’ choice
behaviors by ruling out the dissuaded and the defiers and are thus subject to criticism for being too strong.
To address this issue, we propose a sharp test for Assumption 2.1.

The idea of the test proposed here closely relates to Balke and Pearl (1997). A binary IA IV model with
monotone treatment response assumption implies that the observed quantity, say P[Yi = 0, Ti = 0, Zi =

0, Xi ∈ A], with A measurable, is a linear combination of the probability of the unobserved outcome and
compliance types:

Aobsp = b, (2)

where Aobs is a matrix that reflects the restrictions on the data, p is a vector of the unobserved persuasion
and compliance types defined in Table 1, b is a collection of observed quantities, for example P[Yi = 0, Ti =

0, Xi ∈ A | Zi = 0].11 Thus, the observed quantity b is consistent with Assumption 2.1 if there exists a
solution to the system of linear equations in 2. We now summarize this observation to Proposition 7.1.

Proposition 7.1. If Assumption 2.1 holds, then, there exists p ≥ 0 such that Aobsp = b for all measurable
set A.

11We provide an example of Aobs, p, and b in Appendix F.
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An implication of Proposition 7.1 is that to test the validity of Assumption 2.1, for observed data
{Yi, Ti, Zi, Xi}n

i=1 that is an independently and identically distributed sample drawn from P ∈ P, it suf-
fices to test the null hypothesis:

H0 : P ∈ P0 versus H1 : P ∈ P \ P0 (3)

where P0 := {P ∈ P : ∃p ≥ 0 s.t. Aobsp = b}, which is the set of distributions that is consistent with
Assumption 2.1. Thus, if H0 is rejected, we have strong evidence against the validity of Assumption 2.1.
However, if H0 is not rejected, we cannot confirm the validity of Assumption 2.1. In this precise sense,
Assumption 2.1 is a refutable but nonverifiable hypothesis (Kitagawa, 2015).

In terms for the implementation of testing 3, with discrete Xi, we can set A to be the support of Xi, and
proceed the test using the recent advancement on testing whether there exists a nonnegative solution to a
possibly under-determined system of linear equations with known coefficients (Bai et al., 2022; Fang et al.,
2023). One computationally intensive, yet feasible method for testing H0 proposed in Bai et al. (2022) is
to use subsampling method. With the subsampling method, by using the classic results in Romano and
Shaikh (2012), Bai et al. (2022) shows that the test controls size uniformly over P. The test statistic in Bai
et al. (2022) is given by:

Tn := inf
p≥0:Bp=1

√
n
∣∣∣Aobsp − b̂

∣∣∣ ,

where b̂ is an estimator of b.12 For the subsampling-based test, Bai et al. (2022) defines the following
quantity:

Ln(t) :=
1

Nn
∑

1≤1≤Nn

1

{
inf

p≥0:Bp=1

√
n
∣∣∣Aobsp − b̂j

∣∣∣ ≤ t
}

,

where Nn = (n
b), j indexes the jth subsample of size b, b̂j is b̂ evaluated at jth subset of the data. The

subsampling-based test in Bai et al. (2022) is:

Tsub
n := 1{Tn > L−1

n (1 − α)}.

7.3 Sensitivity Analysis: the Monotone Treatment Response Assumption

Besides testing the identification assumptions jointly in the previous subsection, we now develop a sensitiv-
ity analysis approach to help researchers assess to what extent the point identification results are sensitive
to the monotone treatment response assumption. Note that we apply the sensitivity analysis to the identi-
fication results in Lemma 4.2.

The sensitivity analysis builds on the idea in Balke and Pearl (1997). Note that the marginal distribu-
tion of potential outcomes is the marginal distribution of the potential outcomes among compliers can be

12We choose ℓ2 norm when computing the test statistic. One advantage of using ℓ2 norm is that it formulates a convex optimization
problem that can be efficiently solved by standard statistical software, say, R (Boyd and Vandenberghe, 2004; Fu et al., 2017). For more
discussions on computing the test statistic, see Appendix G.
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represented as the following linear systems of equations:
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1




P[Yi(0) = 0, Yi(1) = 0|Ti(1) > Ti(0)]
P[Yi(0) = 0, Yi(1) = 1|Ti(1) > Ti(0)]
P[Yi(0) = 1, Yi(1) = 0|Ti(1) > Ti(0)]
P[Yi(0) = 1, Yi(1) = 1|Ti(1) > Ti(0)]

 =


P[Yi(0) = 0|Ti(1) > Ti(0)]
P[Yi(0) = 1|Ti(1) > Ti(0)]
P[Yi(1) = 0|Ti(1) > Ti(0)]
P[Yi(1) = 1|Ti(1) > Ti(0)].


Therefore, we can vary the size of P[Yi(0) = 1, Yi(1) = 0|Ti(1) > Ti(0)] to see how the point identifica-

tion results for the joint distribution of potential outcomes change. Here, with known P[Yi(0) = 1, Yi(1) =
0|Ti(1) > Ti(0)], we can point identify P[Yi(0) = 0, Yi(1) = 0|Ti(1) > Ti(0)], P[Yi(0) = 0, Yi(1) = 1|Ti(1) >
Ti(0)], and P[Yi(0) = 1, Yi(1) = 1|Ti(1) > Ti(0)] from the system of equations above.

8 Empirical Application: Revisit Green et al. (2003)

This section demonstrates the application of the methods using Green et al. (2003) as an example. First,
we provide information on the empirical setup. Then, we illustrate our main identification results with
data from Green et al. (2003). Finally, we conduct the test for the identification assumptions and sensitivity
analysis.

8.1 Empirical Setup

Green et al. (2003) conducted randomized voter mobilization experiments before the November 6, 2001
election in the following six cities: Bridgeport, Columbus, Detroit, Minneapolis, Raleigh, and St. Paul.
The instrument Zi is a randomly assigned face-to-face contact from a coalition of nonpartisan student and
community organizations, encouraging voters to vote. The treatment Ti is whether or not voters indeed
received face-to-face contact. The outcome variable Yi is voter turnout in various elections in 2001. There are
two pre-treatment covariates that we are interested in. For the full sample, we are interested in whether or
not voters voted in the 2000 presidential election. We also restrict the analysis to Bridgeport. For Bridgeport,
we are interested in whether or not voters are Democrats. A summary statistics table is provided in Table 2.

Table 2: Summary Statistics in Green et al. (2003)

Observations Mean Std. Dev. Min Max
Panel A: Full Sample
Yi: Vote 18,933 0.296 0.457 0 1
Ti: Take-up of the GOTV 18,933 0.136 0.342 0 1
Zi: Assignment the GOTV 18,933 0.461 0.498 0 1
Voted in 2000 18,933 0.608 0.488 0 1
Panel B: Bridgeport
Yi: Vote 1,806 0.118 0.323 0 1
Ti: Take-up of the GOTV 1,806 0.137 0.344 0 1
Zi: Assignment the GOTV 1,806 0.496 0.5 0 1
Democrat 1,806 0.539 0.499 0 1

Note: This table provides summary statistics for Green et al. (2003). Std. Dev.
stands for standard deviation.
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8.2 Empirical Results

We first present the results for the marginal and joint distribution of potential outcomes of compliers in
Table 3. Our results reveal two interesting patterns. First, conditional on compliers, most of them are never-
persuaded in both samples. Second, only 7.9% of voters are persuaded conditional on compliers in the full
sample, and 13.9% of voters are persuaded conditional on compliers in Bridgeport.

Table 3: Distribution of Potential Outcomes in Green et al. (2003)

Estimates 95% CI 95% AR CI
Panel A: Full Sample
P[Yi(0) = 1|Ti(1) > Ti(0)] 0.302 (0.261, 0.343) (0.263, 0.343)
P[Yi(1) = 1|Ti(1) > Ti(0)] 0.381 (0.364, 0.398) (0.365, 0.397)
P[Yi(0) = 1, Yi(1) = 1|Ti(1) > Ti(0)] 0.302 (0.261, 0.343) (0.263, 0.343)
P[Yi(0) = 0, Yi(1) = 0|Ti(1) > Ti(0)] 0.619 (0.602, 0.636) (0.603, 0.635)
P[Yi(0) = 0, Yi(1) = 1|Ti(1) > Ti(0)] 0.079 (0.035, 0.123) (0.036, 0.122)
Panel B: Bridgeport
P[Yi(0) = 1|Ti(1) > Ti(0)] 0.111 (0.019, 0.202) (0.02, 0.202)
P[Yi(1) = 1|Ti(1) > Ti(0)] 0.25 (0.197, 0.303) (0.196, 0.303)
P[Yi(0) = 1, Yi(1) = 1|Ti(1) > Ti(0)] 0.111 (0.019, 0.202) (0.02, 0.202)
P[Yi(0) = 0, Yi(1) = 0|Ti(1) > Ti(0)] 0.75 (0.697, 0.803) (0.697, 0.804)
P[Yi(0) = 0, Yi(1) = 1|Ti(1) > Ti(0)] 0.139 (0.033, 0.245) (.034, 0.244)

Note: This table provides estimated marginal and joint distributions of potential
outcomes among compliers for Green et al. (2003). CI stands for confidence interval.
AR stands for Anderson-Rubin.

We now apply Theorem 5.1 and Theorem 5.2 to this experiment. The results are presented in Table 4.
For the full sample, the probability of voting in the 2000 presidential election conditional on the locally
persuadable (that is, those who do not vote without the information treatment and compliers) is 60.3%. A
more interesting finding is that the subpopulation of always-persuaded compliers has the highest proba-
bility (that is, 95.4%) of voting in the 2000 presidential election. The results show that if always-persuaded
and complier voters vote in the low-profile local elections regardless of the GOTV intervention, they will
very likely vote in the high-profile 2000 presidential elections. This empirical pattern is consistent with
the robust findings on the persistent of voting behavior (Gerber et al., 2003). One potential explanation
of the persistent of the voting behavior is that voting behavior is habit-forming (Gerber et al., 2003). As
expected, the subpopulation of never-persuaders and compliers has the lowest probability of voting in the
2000 presidential election.

Another interesting finding is that the voting propensity in the 2000 presidential election of the per-
suaded and compliers is very close to the always-persuaded and compliers. It is consistent with the findings
that GOTV experiments mobilize the high-propensity voters (Enos et al., 2014). One potential explanation
is that the GOTV programs only mobilize the voters who are on the margin of not voting. Hence, the
persuaded voters should have a voting propensity that is close to the always-persuaded voters.

For the Bridgeport sample, the most interesting result is that among compliers and persuaded, the
chance of them being a Democrat is very high. However, its confidence interval is pretty wide. Mobilizing
more Democrats in the school board election in Bridgeport has practical implications for two reasons. First,
Democrats are more pro-union. Second, the turnout rate in school board elections is usually low.13 The

13According to Green et al. (2003), the turnout rate in Bridgeport school board election in the control arm is 9.9%
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mobilized voters might vote for pro-union candidates and help select candidates who were more likely to
increase teachers’ salaries and benefits and improve their working conditions (Anzia, 2011).

Table 4: Profiling Persuasion Types in Green et al. (2003)

Estimates 95% CI 95% AR CI
Panel A: Full Sample
P[Voted in 2000 = 1|Yi(0) = 0, Ti(1) > Ti(0)] 0.603 (0.547, 0.659) (0.549, 0.659)
P[Voted in 2000 = 1|Yi(0) = 1, Yi(1) = 1, Ti(1) > Ti(0)] 0.954 (0.914, 0.994) (0.914, 0.994)
P[Voted in 2000 = 1|Yi(0) = 0, Yi(1) = 0, Ti(1) > Ti(0)] 0.511 (0.489, 0.534) (0.489, 0.533)
P[Voted in 2000 = 1|Yi(0) = 0, Yi(1) = 1, Ti(1) > Ti(0)] 0.885 (0.715, 1) (0.657, 1)
Panel B: Bridgeport
P[Democrat = 1|Yi(0) = 0, Ti(1) > Ti(0)] 0.515 (0.35, 0.68) (0.349, 0.681)
P[Democrat = 1|Yi(0) = 1, Yi(1) = 1, Ti(1) > Ti(0)] 0.507 (0.078, 0.935) (0, 0.920)
P[Democrat = 1|Yi(0) = 0, Yi(1) = 0, Ti(1) > Ti(0)] 0.538 (.467, 0.609) (0.467, 0.609)
P[Democrat = 1|Yi(0) = 0, Yi(1) = 1, Ti(1) > Ti(0)] 0.813 (0.437, 1) (0.346, 1)

Note: This table provides the results of profiling different persuasion types using pre-treatment co-
variates. CI refers to confidence interval. AR refers to Anderson-Rubin.

8.3 Testing Identification Assumptions and Sensitivity Analysis

We implement the test for the Assumption 2.1 by using Proposition 7.1. We use the subsampling method
in Bai et al. (2022) for this test.14 The results in Figure 1 show that we cannot reject the validity of the
identification assumptions at the 5% level for both the full sample and the Bridgeport sample. Further-
more, we provide the sensitivity analysis result on the joint distribution of potential outcomes in Table 5
by varying the degree to which the monotone treatment response assumption is violated among compilers.
Interestingly, when the violation becomes larger, the proportion of persuaded among compliers increases.

Figure 1: Test Identification Assumptions using Bai et al. (2022)
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Note. These figures present the results for testing identification assumptions. Figure 1a presents the results using the full sample.
Figure 1b presents the results using the sample from Bridgeport. The solid lines are the critical value for a 5% level test. The dashed
lines are the test statistics.

14The subsampling test in Bai et al. (2022) requires us to pick a size for the subsample with bn −→ ∞ and bn
n −→ 0. We set bn to n

2
3

here.
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Table 5: Sensitivity for Distribution of Potential Outcomes in Green et al. (2003)

Panel A: Full Sample
Sensitivity Parameter
P[Yi(1) = 0, Yi(0) = 1|Ti(1) > Ti(0)] 0.1 0.12 0.14 0.16 0.18 0.2
Identified Parameters
P[Yi(1) = 1, Yi(0) = 1|Ti(1) > Ti(0)] 0.202 0.182 0.162 0.142 0.122 0.102
P[Yi(1) = 0, Yi(0) = 0|Ti(1) > Ti(0)] 0.519 0.499 0.479 0.459 0.439 0.419
P[Yi(1) = 1, Yi(0) = 0|Ti(1) > Ti(0)] 0.179 0.199 0.219 0.239 0.259 0.279
Panel B: Bridgeport
Sensitivity Parameter
P[Yi(1) = 0, Yi(0) = 1|Ti(1) > Ti(0)] 0.05 0.06 0.07 0.08 0.09 0.1
Identified Parameters
P[Yi(1) = 1, Yi(0) = 1|Ti(1) > Ti(0)] 0.061 0.051 0.041 0.031 0.021 0.011
P[Yi(1) = 0, Yi(0) = 0|Ti(1) > Ti(0)] 0.7 0.69 0.68 0.67 0.66 0.65
P[Yi(1) = 1, Yi(0) = 0|Ti(1) > Ti(0)] 0.189 0.199 0.209 0.219 0.229 0.239

Note: This table provides sensitivity analysis on the joint distribution of potential out-
comes among compliers by varying the size of the dissuaded among compliers.

9 Conclusion

In the empirical study of persuasion, researchers often use a binary instrument to encourage individuals
to consume information. The outcome of interest is also binary. Under the IA IV assumptions and the
monotone treatment response assumption, we first show that it is possible to identify the joint distributions
of potential outcomes among compliers. In other words, we can identify the percentage of the always-
persuaded (that is, individuals who take the action of interest with and without the information treatment),
the percentage of the never-persuaded (that is, individuals who do not take the action of interest with and
without the information treatment), and the persuaded (that is, those who are mobilized by the treatment
into taking the action of interest). These new quantities can thus provide richer information on the distri-
bution of the treatment effects of the information treatment.

Furthermore, we develop a weighting method that helps researchers identify the statistical characteris-
tics measured by the pre-treatment covariates of persuasion types: compliers and always-persuaded, com-
pliers and persuaded, and compliers and never-persuaded. These findings extend the ”κ weighting” results
in Abadie (2003), which can profile the characteristics of compliers measured by pre-treatment covariates.
This method can provide richer information on the treatment effect. For instance, some GOTV experiments
aim at mobilizing underrepresented minorities. With this methodology, researchers can estimate the chance
of the compliers and mobilizable voters being underrepresented minorities. Thus, researchers can assess
whether or not their interventions achieve their normative goals.

To address the criticism on the monotone treatment response assumption, we provide two sets of solu-
tions. First, we provide a sharp test on these two identification assumptions. The test boils down to testing
whether there exists a nonnegative solution to a possibly under-determined system of linear equations with
known coefficients. we also develop a simple sensitivity analysis to assess the sensitivity of the results with
respect to the monotone treatment response assumption.

An application based on Green et al. (2003) is provided. The result shows that among compliers, roughly
11% voters are persuaded. Moreover, we find that among compliers, the chance for always-persuaded
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voters to vote in the 2000 presidential election is the highest, and the chance for never-persuaded voters
to vote in the 2000 presidential election is the lowest. These results are consistent with the interpretation
that voters’ voting behaviors are habit-forming, hence are highly persistent (Gerber et al., 2003). Moreover,
our results show that the voting propensity of those persuaded is close to those always-persuaded, which
is consistent with the finding that GOTV programs mobilize high-propensity voters (Enos et al., 2014).
Furthermore, in Bridgeport, the results show that the chance of being a Democrat among the persuaded
voters and compliers in Bridgeport is high, though the estimate is quite noisy.

As pointed out in the paper, the results for the binary instrument can be easily generalized to discrete-
valued instrument. However, the composition of compliers changes with any components in {z, z′} changes.
This creates an aggregation problem. Furthermore, with discrete-valued instrument, researchers can apply
the partial identification approach in Mogstad et al. (2018) to partially identify the persuasion rate, which
can help researchers assess the welfare impact of the information treatment. These constitute interesting
topics for future research.
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Appendix A Identifiability of the Joint Distribution of Non-Binary In-

struments or Outcomes

This section covers two potential directions for extending Lemma 4.2. The first direction explores the pos-
itive outcomes that arise from utilizing a non-binary instrument to extend Lemma 4.2. Following this, we
delve into the negative outcomes associated with using a non-binary outcome to extend 4.2.

A.1 Non-Binary Instrument

Assumption 2.1 is adjusted to accommodate a discrete-valued instrument in two ways. Firstly, the IV
monotonicity condition is crucially modified. With a discrete-valued instrument, the IV “monotonicity”
condition must be satisfied for each pair of instruments. That is, changing the instrument from z to z′ will
either encourage or discourage every individual from taking up the treatment. Secondly, the IV relevance
assumption is also revised. In this case, at least one instrument value must lead to changes in selection
behavior. The formal statement of the revised assumption is now presented as Assumption A.1.

Assumption A.1. (Potential Outcome and Treatment Model with Discrete Valued Instrument)

1. Monotone treatment response: Yi(1) ≥ Yi(0) holds almost surely with Yi(0) and Yi(1) binary,

2. Exclusion restriction: Yi(t, z) = Yi(t), for t, z ∈ supp(Ti, Zi),

3. Exogenous instrument: Zi ⊥⊥ (Yi(0), Yi(1), Ti(0), Ti(1), Xi),

4. First stage: P[Ti = 1|Zi = z] is a non-trivial function of z,

5. IV Monotonicity: either Ti(z) ≥ Ti(z′) or Ti(z) ≤ Ti(z′) holds almost surely for z ̸= z′ with z, z′ ∈
supp(Zi).

With Assumption A.1, we can point identify the joint distribution of potential outcomes among each
complier group. The intuition of the result is that with Assumption A.1, the proof proceeds “as-if” we are
using a binary IV with support being {z, z′}. We now formally state the results in Corollary A.1.

Corollary A.1. Suppose Assumption A.1 holds, conditional on z, z′ compliers (that is, z, z′ ∈ supp(Zi) and
Ti(z) = Ti(z′) does not hold almost surely), the joint distribution of potential outcome is point identified,:

P[Yi(1) = 1, Yi(0) = 1 | Ti(z) ≥ Ti(z′)] =
P[Yi = 1, Ti = z′ | Zi = z′]− P[Yi = 1, Ti = z′|Zi = z]

E[Ti|Zi = z]− E[Ti | Zi = z′]

P[Yi(1) = 1, Yi(0) = 0 | Ti(z) ≥ Ti(z′)] =
E[Yi | Zi = z]− E[Yi | Zi = z′]
E[Ti | Zi = z]− E[Ti | Zi = z′]

P[Yi(1) = 0, Yi(0) = 0 | Ti(z) ≥ Ti(z′)] =
P[Yi = 0, Ti = z | Zi = z]− P[Yi = 0, Ti = z|Zi = z′]

E[Ti | Zi = z]− E[Ti|Zi = z′]
.

Just as with a discrete-valued instrument, the identification assumptions will be modified for a contin-
uous instrument. These modifications concern the IV monotonicity and IV relevance assumptions. In this
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case, we use an indicator selection equation to describe the first stage selection process. With this represen-
tation, it is easy to characterize the treatment effect on different margins of self-selecting into the treatment.
We also assume that at least one instrument value leads to changes in the treatment-taking behavior. As-
sumption A.2 formally states the identification assumptions for this scenario.

Assumption A.2. (Binary Treatment and Outcome Model with a Continuous Instrument)

1. Yi(0) ≤ Yi(1) holds almost surely, and Yi(0), Yi(1) ∈ {0, 1},

2. Ti(z) = 1{Vi ≤ ν(z)}, where ν : Z → R is a non-trivial measurable function with respect to z and
assume without loss of generality that Vi ∼ U[0, 1],

3. Zi ⊥⊥ (Yi(0), Yi(1), Vi, Xi).

Before proceeding to present the identification results, we give two remarks related to Assumption A.2.
First, the indicator selection equation is equivalent to the monotonicity condition in the IA IV model (Vyt-
lacil, 2002). To see this, observe that a change in z induces a shift either toward or away from treatment
for the support of Vi. Second, instead of assuming Vi ∼ U[0, 1], we can also assume Vi being continu-
ously distributed. This implies that we can normalize the distribution of Vi to be uniformly distributed
over [0, 1]. A consequence of this normalization is that ν(z) = P(z), where P(z) is the propensity score:
P(z) ≡ P[Ti = 1|Zi = z].

Corollary A.2. Assume that Assumption A.2 holds, furthermore, assume that supp(P(Zi)) = [0, 1], then,
the joint distribution of potential outcomes at each margin of selecting into the treatment is identified:

P[Yi(1) = 1, Yi(0) = 0 | Vi = v] =
∂

∂v
E[Yi | P(Zi) = v],

P[Yi(1) = Yi(0) = 1 | Vi = v] = P[Yi = 1 | P(Zi) = v, Ti = 0]− (1 − v)
∂P[Yi = 1 | P(Zi) = v, Ti = 0]

∂v
,

P[Yi(1) = Yi(0) = 0 | Vi = v] = P[Yi = 0 | P(Zi) = v, Ti = 1] + v
∂P[Yi = 0 | P(Zi) = v, Ti = 1]

∂v
.

A.2 Non-Binary Outcome

We now discuss whether we can extend the identification of the joint distribution of potential outcomes
in Lemma 4.2 to the case when the outcome is trinary. In the empirical study of persuasion, there are
three possible outcomes: 0 is an outside option, 1 is the target action of persuasion, and −1 is any other
action. Without the monotone treatment response assumption, we can classify individuals into nine types
according to the potential outcomes.15 Table 6 presents the classification.

With the trinary outcome, two types of monotone treatment response assumptions were made in the
previous literature. Jun and Lee (2018) assumed that the information treatment has a monotone treatment
effect on the target action of persuasion: we rule out the type of individuals who will take the action of

15Jun and Lee (2018) does not use the conventional potential outcome notation in their discussion. Jun and Lee (2018) first writes
out the choice set facing agent i. They use the following notation: S = {0, 1,−1}. To write out agent i’s potential outcomes, Jun and
Lee (2018) uses the following notation: Yi(t) = (Yi0(t), Yi1(t), Yi,−1(t)), where t ∈ {0, 1}. Yi0(t) denotes whether the individual choose
to take the action 0 if the treatment is t. Yi1(t) and Yi,−1(t) are defined similarly. Moreover, ∑j∈S Yij(t) = 1 for t ∈ {0, 1}. That is,
the choices in S are exclusive and exhaustive. It is easy to see that there is a duality between the notation in Jun and Lee (2018) and
conventional potential outcome notation used in Table 6.
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Table 6: Types of Individuals with Trinary Outcome

Yi(0) Yi(1)
−1 −1
−1 0
−1 1
0∗∗ −1∗∗

0 0
0 1
1∗ −1∗

1∗ 0∗

1 1

interest without being exposed to the treatment but will choose the outside action or any other action with
being exposed to the treatment. In other words, with the monotone treatment response assumption made
in Jun and Lee (2018), the seventh and eighth row (those with ∗) in Table 6 occur with probability zero.

A stronger monotone treatment response assumption was made in Manski (1997). The monotone treat-
ment response assumption in Manski (1997) assumes that Yi(1) ≥ Yi(0) holds with probability one: the
fourth row (those with ∗∗), and the seventh and the eighth rows (those with ∗) happen with zero proba-
bility. Manski (1997) further assumes out the type of individuals who will take the outside action without
being exposed to the treatment but will take any other action with being exposed to the treatment.

Given the monotone treatment response assumption in Jun and Lee (2018), we know that there are seven
unknown probabilities for the joint distribution of potential outcomes among compliers. Moreover, by the
classic results of Imbens and Rubin (1997), we know that the marginal distribution of potential outcomes
among compliers is point identifiable. Among compliers, the joint distribution of potential outcomes is a
function of the marginal distribution of potential outcomes. In other words, we have a system of linear
equations with six known probabilities of the marginal distribution of potential outcomes among com-
pliers and seven unknown probabilities of the joint distribution of potential outcomes among compliers.
Therefore, the marginal distribution of potential outcomes is not point identified given the monotonicity
assumption in the trinary outcome case in Jun and Lee (2018).

A remaining question to ask is whether we can point identify the joint distribution of potential out-
comes with the monotone treatment response assumption made in Manski (1997). Again, the answer is
no. The reason is that even though we have six unknowns and six equations, the information in the data is
repetitive. We formally state the show the impossibility results in the following Proposition.

Proposition A.1. Assume that the potential outcomes are trinary, i.e., Yi(t) ∈ {−1, 0, 1} for t ∈ {0, 1}.
Furthermore, assume the following monotone treatment response assumption: Yi(1) ≥ Yi(0) holds with
probability one. Moreover, assume assumptions 1 to 4 in Assumption 2.1 hold. Then, the joint distribution
of potential outcomes among compliers is not point identified.

Even though we cannot point identify the joint distribution of potential outcomes among compliers in
this case, We can still partially identify the joint distribution of potential outcomes among compliers using
the approaches in Balke and Pearl (1997). For example, to construct sharp bounds for P[Yi(0) = −1, Yi(1) =
−1|Ti(1) > Ti(0)], we can form a linear program with the objective function being P[Yi(0) = −1, Yi(1) =
−1|Ti(1) > Ti(0)] and the constraints being the linear system of equations in the proof of Proposition A.1.
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One way to restore the point identification of the joint distribution of potential outcomes with non-
binary Yi under the monotone treatment response and IA IV assumptions is to binarize the outcome vari-
able. To see this, assume without loss of generality that Yi(1) ≥ Yi(0) holds almost surely. Define the
following two binary random variables: 1{Yi(1) ≥ x} and 1{Yi(0) ≥ x} with x ∈ R. Then, by the mono-
tone treatment response, it follows immediately that 1{Yi(1) ≥ x} ≥ 1{Yi(0) ≥ x} holds almost surely.
Thus, the results in Lemma 4.2 hold for the new binarized outcome variable.

Appendix B Profiling Compliers with a Non-Binary Instrument

In Appendix A.1, we have shown that the joint distribution of potential outcomes is identifiable with a
non-binary instrument. As a result, the profiling results presented in Theorem 5.2 can be readily applied
to this case. The profiling results for a discrete instrument and a continuous instrument are presented in
Corollary B.1 and Corollary B.2 respectively.

Corollary B.1. Assume that Assumption A.1 holds, and let g : R −→ R be measurable with E[|g(Xi)|] < ∞,
then, conditional on z, z′ compliers (that is, z, z′ ∈ supp(Zi), Ti(z) = Ti(z′) does not hold almost surely,
and assume without loss of generality that Ti(z) ≥ Ti(z′) holds almost surely), the expectation of g(Xi) is
identified:

E[g(Xi)|Yi(1) = Yi(0) = 1, Ti(z) ≥ Ti(z′)]

=
E[g(Xi)1{Yi = 1, Ti = 0}|Zi = z′]− E[g(Xi)1{Yi = 1, Ti = 0}|Zi = z}]

P[Yi = 1, Ti = 0|Zi = z′]− P[Yi = 1, Ti = 0|Zi = z]
,

E[g(Xi)|Yi(1) = Yi(0) = 0, Ti(z) ≥ Ti(z′)]

=
E[g(Xi)1{Yi = 0, Ti = 1}|Zi = z]− E[g(Xi)1{Yi = 0, Ti = 1}|Zi = z′]

P[Yi = 0, Ti = 1|Zi = z]− P[Yi = 0, Ti = 1|Zi = z′]
,

E[g(Xi)|Yi(1) = 1, Yi(0) = 0, Ti(z) ≥ Ti(z′)]

=
E[g(Xi)1{Yi = 1}|Zi = z]− E[g(Xi)1{Yi = 1}|Zi = z′]

E[Yi|Zi = z]− E[Yi|Zi = z′]
.

Corollary B.2. Assume that Assumption A.2 holds, furthermore, assume that supp(P(Zi)) = [0, 1]. Let
g : R −→ R be measurable with E[|g(Xi)|] < ∞, then, conditional at each margin of selecting into the
treatment, the expectation of g(Xi) is identified:

E[g(Xi) | Yi(1) = 1, Yi(0) = 0, Vi = v]

=
∂

∂v E[g(Xi)Yi | P(Zi) = v]
∂

∂v E[Yi | P(Zi) = v]

E[g(Xi) | Yi(1) = Yi(0) = 1, Vi = v]

=
E[g(Xi)Yi | P(Zi) = v, Ti = 0]− (1 − v) ∂E[g(Xi)Yi |P(Zi)=v,Ti=0]

∂v

P[Yi = 1 | P(Zi) = v, Ti = 0]− (1 − v) ∂P[Yi=1|P(Zi)=v,Ti=0]
∂v

E[g(Xi) | Yi(1) = Yi(0) = 0, Vi = v]

=
E[g(Xi)1{Yi = 0} | P(Zi) = v, Ti = 1] + v ∂E[g(Xi)1{Yi=0}|P(Zi)=v,Ti=1]

∂v

P[Yi = 0 | P(Zi) = v, Ti = 1] + v ∂P[Yi=0|P(Zi)=v,Ti=1]
∂v

.
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Appendix C A Different Quantity of “Profiling”

A different quantity of interest is the following: conditional on compliers and the pretreatment covariates,
the probability of being different persuasion types (i.e., always-persuaded, persuaded, never-persuaded).
Given the strong IV independence assumption, such quantity is point identifiable because the strong IV
independence assumption, we have:

P[Yi(1) = 0, Yi(0) = 0 | Ti(1) > Ti(0), Xi] =
P[Yi = 1, Ti = 0 | Zi = 0, Xi]− P[Yi = 1, Ti = 0 | Zi = 1, Xi]

E[Ti | Zi = 1, Xi]− E[Ti | Zi = 0, Xi]
,

P[Yi(1) = 1, Yi(0) = 0 | Ti(1) > Ti(0), Xi] =
E[Yi | Zi = 1, Xi]− E[Yi | Zi = 0, Xi]

E[Ti | Zi = 1, Xi]− E[Ti | Zi = 0, Xi]
,

P[Yi(1) = 1, Yi(0) = 1 | Ti(1) > Ti(0), Xi] =
P[Yi = 0, Ti = 1 | Zi = 1, Xi]− P[Yi = 0, Ti = 1 | Zi = 0, Xi]

E[Ti | Zi = 1, Xi]− E[Ti | Zi = 0, Xi]
.

These quantities might be useful for optimal treatment allocation with non-compliance (Kitagawa and
Tetenov, 2018; Athey and Wager, 2021). This is beyond the scope of this paper, and we leave it for future
research.

Appendix D Identification: Always-Takers and Never-Takers

For always-takers, we observe their Yi(1). For never-takers, we observe their Yi(0). Therefore, the weight-
ing method developed in Theorem 5.1 can be extended to always-takers and never-takers. The results are
presented in Proposition D.1.

Proposition D.1. Assume that Assume that 1 to 4 in Assumption 2.1 hold, furthermore, assume that
we observe pre-treatment covariates Xi, and let g(·) be any measurable real function of Xi such that
E[|g(Xi)|] < ∞, then, for y ∈ {0, 1}, we have the following:

E[g(Xi)|Yi(1) = y, Ti(1) = Ti(0) = 1] = E[g(Xi)|Yi = y, Ti = 1, Zi = 0]

E[g(Xi)|Yi(0) = y, Ti(1) = Ti(0) = 0] = E[g(Xi)|Yi = y, Ti = 0, Zi = 1].

With the IA IV assumption, Proposition D.1 states that the conditional moments of Xi conditional on
always-takers and their treated potential outcomes and the conditional moments of Xi conditional on never-
takers and their untreated potential outcomes are identifiable. Furthermore, Proposition D.1 implies that
the conditional cumulative distribution functions are identifiable. This follows because g(x) = 1{Xi ≤ x}
is a bounded measurable map.

For always-takers, if we further assume the monotone treatment response, we can identify the statistical
characteristics measured by pre-treatment covariates of the never-persuaded and always-takers. For never-
takers, if we further assume the monotone treatment response, we can identify the statistical characteristics
measured by pre-treatment covariates of the always-persuaded and never-takers.
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Appendix E More on Estimation and Inference

In this appendix, we offer more detailed discussions on the estimation and inference issues related to the
estimands proposed in Section 4 and 5. Our first focus is on the estimation and inference results with strong
identification. Afterward, we shift our discussion to the inference results when identification is weak.

E.1 Estimation and Inference under Strong Identification

Recall that our identification results give us the following β IV estimand:

β IV =
E[ f (Xi, Yi, Ti) | Zi = 1]− E[ f (Xi, Yi, Ti) | Zi = 0]

E[h(Yi, Ti) | Zi = 1]− E[h(Yi, Ti) | Zi = 0]
.

We can use the sample analog to estimate β IV :

β̂IV =

(
1
n

n

∑
i=1

(
1
Zi

)
(1, h(Yi, Ti))

)−1(
1
n

n

∑
i=1

(
1
Zi

)
f (Xi, Yi, Ti)

)
,

with β̂ IV being the second component of β̂IV . Using a standard argument (e.g., see Chapter 12 in Hansen
(2022)), we can show the consistency and asymptotic normality of β̂IV under suitable regularity conditions.
We now formally claim the results below.

Proposition E.1. Assume that the following conditions hold:

1. E[ f (Xi, Yi, Ti)
4] < ∞,

2. E

[(
1
Zi

)
(1, Zi)

]
is positive definite,

3. E

[(
1
Zi

)
(1, h(Yi, Ti))

]
is rull rank,

4. E

[(
1
Zi

)
ei

]
= 0, where ei is the residual from regressing f (Xi, Yi, Ti) on h(Yi, Ti),

5. E[h(Yi, Ti)
4] < ∞,

6. E[Z4
i ] < ∞,

7. Ω = E

[(
1
Zi

)
(1, Zi)ei

]
is positive definite,

then,
√

n
(

β̂IV − βIV

)
is asymptotically normal:

√
n
(

β̂IV − βIV

) D−→ N

0, E

[(
1
Zi

)
(1, h(Xi, Ti))

]−1

ΩE

[(
1

h(Xi, Ti)

)
(1, Zi)

]−1
 .
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Moreover, a consistent estimator for E

[(
1
Zi

)
(1, h(Xi, Ti))

]−1

ΩE

[(
1

h(Xi, Ti)

)
(1, Zi)

]−1

is:

(
1
n

n

∑
i=1

(
1
Zi

)
(1, h(Xi, Ti))

)−1

Ω̂

(
1
n

n

∑
i=1

(
1

h(Xi, Ti)

)
(1, Zi)

)−1

,

where Ω̂ =

(
1
n ∑n

i=1

(
1
Zi

)
(1, Zi)

(
f (Xi, Yi, Ti)− (1, h(Yi, Ti))β̂IV

))
.

Before we proceed, we now give a remark on the consistency of the estimator we proposed. Let g(Xi) =

1{Xi ≤ x}, Theorem 5.1 shows that we can point identify the conditional distribution function among the
locally persuadable:

P[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]

=
P[Xi ≤ x, Yi = 0, Ti = 0|Zi = 0]− P[Xi ≤ x, Yi = 0, Ti = 0|Zi = 1]

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]
.

It is easy to see that P̂[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)] is a (pointwise) consistent estimator for P[Xi ≤
x|Yi(0) = 0, Ti(1) > Ti(0)]. By the same idea in the Glivenko-Cantelli Theorem (see, e.g., Theorem 2.4.7 in
Durrett (2010)), we can strengthen the pointwise consistency to uniform consistency:

sup
x∈R

∣∣P̂[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]− P[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]
∣∣ P−→ 0.

We prove this uniform consistent result in Appendix I.15.

E.2 An Anderson-Rubin Test under Weak Identification

Note that the estimand in Equation 1 is a function of two regression coefficients:

p =
β1

β2
≡ E[ f (Xi, Yi, Ti) | Zi = 1]− E[ f (Xi, Yi, Ti) | Zi = 0]

E[h(Yi, Ti) | Zi = 1]− E[h(Yi, Ti) | Zi = 0]
.

A concern regarding the asymptotic approximation discussed in the previous section is that the denomina-
tor β2 may be close to zero. When faced with weak identification, the asymptotic approximation discussed
earlier may not perform well. Fortunately, in the current exact identified scenario, we can use the Anderson-
Rubin test to circumvent the issue of weak identification.

Note that under the null hypothesis H0 : p = p0, we have that p0β2 − β1 = 0. Therefore, by using the
delta method, the limiting distribution of

√
n(p0 β̂1 − β̂2) under H0 is:

√
n(p0 β̂1 − β̂2)

D−→ N(0, γ),

where γ = Var(β1)− 2p0 Cov(β1, β2)) + p2
0 Var(β2).
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Therefore, a test statistic is:

Tn =
n(p0 β̂1 − β̂2)

2

γ̂
,

where γ̂ is a consistent estimator for γ. By Slutsky’s Lemma, we further know that:

Tn
D−→ χ(1).

Using the AR statistic, we can form an AR test of H0 : p = p0 as:

ϕAR(p0) = 1{Tn > χ2
1,1−α},

where χ2
1,1−α is the 1 − α quantile of χ2

1 distribution. As noted by Staiger and Stock (1997), this yields a
size-α test that is robust to weak identification. We then can form a level 1 − α weak-identification-robust
confidence set by collecting the nonrejected values.

Appendix F A System of Equation for the Binary IV Model with Mono-

tone Treatment Response

Assumption 1 to 4 in Assumption 2.1 implies the following system of linear equations:

Aobsp = b,

where Aobs, p, and b are defined as the following with A being a measurable set:

Aobs =



1 1 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 1 1 0 1 1


,

p =



P[Yi(0) = 0, Yi(1) = 0, Ti(0) = 0, Ti(1) = 0, Xi ∈ A]

P[Yi(0) = 0, Yi(1) = 0, Ti(0) = 0, Ti(1) = 1, Xi ∈ A]

P[Yi(0) = 0, Yi(1) = 0, Ti(0) = 1, Ti(1) = 1, Xi ∈ A]

P[Yi(0) = 0, Yi(1) = 1, Ti(0) = 0, Ti(1) = 0, Xi ∈ A]

P[Yi(0) = 0, Yi(1) = 1, Ti(0) = 0, Ti(1) = 1, Xi ∈ A]

P[Yi(0) = 0, Yi(1) = 1, Ti(0) = 1, Ti(1) = 1, Xi ∈ A]

P[Yi(0) = 1, Yi(1) = 1, Ti(0) = 0, Ti(1) = 0, Xi ∈ A]

P[Yi(0) = 1, Yi(1) = 1, Ti(0) = 0, Ti(1) = 1, Xi ∈ A]

P[Yi(0) = 1, Yi(1) = 1, Ti(0) = 1, Ti(1) = 1, Xi ∈ A]


,
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b =



P[Yi = 0, Ti = 0, Xi ∈ A | Zi = 0]
P[Yi = 0, Ti = 0, Xi ∈ A | Zi = 1]
P[Yi = 0, Ti = 1, Xi ∈ A | Zi = 0]
P[Yi = 0, Ti = 1, Xi ∈ A | Zi = 1]
P[Yi = 1, Ti = 0, Xi ∈ A | Zi = 0]
P[Yi = 1, Ti = 0, Xi ∈ A | Zi = 1]
P[Yi = 1, Ti = 1, Xi ∈ A | Zi = 0]
P[Yi = 1, Ti = 1, Xi ∈ A | Zi = 1]


.

Appendix G Implementing the Test in Section 7.2

Recall that in Section 7.2, the test statistic is given by:

Tn := inf
p≥0:Bp=1

√
n
∣∣∣Aobsp − b̂

∣∣∣ .

To compute the test statistic, we choose the ℓ2 norm. Thus, the minimizer to the minimization problem in
the test statistic can be obtained by solving:

min
p

∣∣∣∣∣∣Aobsp − b̂
∣∣∣∣∣∣

2

subject to p ≥ 0,
dim(p)

∑
i=1

pi = 1,

where the inequality in the constraint is interpreted to hold component-wise. Note that the minimizer of
the optimization problem above is equivalent to the minimizer of the following minimization problem:

min
p

pT AT
obs Aobsp − 2pT AT

obsb̂

subject to p ≥ 0,
dim(p)

∑
i=1

pi = 1,

The minimization problem above is a convex problem (Boyd and Vandenberghe, 2004), and can be effi-
ciently solved by using CVXR package in R (Fu et al., 2017).

After solving the optimal p∗, we then can compute the test statistics by computing:

Tn =
√

n
∣∣∣Aobsp∗ − b̂

∣∣∣ .

Appendix H An Equivalence Result

We now use the weighting methods developed in Abadie (2003) to derive the results in Theorem 5.1. The
results in Abadie (2003) reweight the observations, which enables us to “find” the compliers and those who
do not take the action of interest without being exposed to the treatment. We now formally state the results
in Proposition H.1.
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Proposition H.1. Assume that 1 to 4 in Assumption 2.1 hold, then, the distribution of Xi conditional on
[Yi(0) = 0, Ti(1) > Ti(0)] is point identified. Let A be a measurable set:

P[Xi ∈ A|Yi(0) = 0, Ti(1) > Ti(0)]

=
P[Xi ∈ A]× (P[Ti = 1|Xi ∈ A, Zi = 1]− P[Ti = 1|Xi ∈ A, Zi = 0]− E[κ0Yi|Xi ∈ A])

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]
,

where κ0 = (1 − Ti)
(1−Zi)−P[Zi=0]
P[Zi=0]P[Zi=1] .

We can also show that the identification results in Theorem 5.1 and Proposition H.1 are equivalent. We
formally state this equivalence result in Proposition H.2.

Proposition H.2. The identification results for P[Xi ∈ A | Yi(0) = 0, Ti(1) > Ti(0)] in Theorem 5.1 and
Proposition H.1 are equivalent.

Appendix I Proofs

I.1 Proof of Lemma 4.1

The results have been shown by Imbens and Rubin (1997) and Abadie (2003). Since the proof is brief, we
include it here for completeness.

For P[Yi(t) = y|Ti(1) > Ti(0)] where y ∈ {0, 1} and t ∈ {0, 1}, we have the following:

P[Yi(t) = y|Ti(1) > Ti(0)] =
P[Yi(t) = y, Ti(1) = 1, Ti(0) = 0]

P[Ti(1) = 1, Ti(0) = 0]

=
P[Yi(t) = y, Ti(1) = 1, Ti(0) = 0]

E[Ti|Zi = 1]− E[Ti|Zi = 0]
,

where the second equality uses Lemma 2.1 in Abadie (2003).

For P[Yi(t) = y, Ti(1) = 1, Ti(0) = 0] with y ∈ {0, 1} and t ∈ {0, 1}:

P[Yi(t) = y, Ti(1) = 1, Ti(0) = 0]

= P[Yi(t) = y, Ti(t) = t]− P[Yi(t) = y, Ti(t) = t, Ti(1 − t) = t]

= P[Yi(t) = y, Ti(t) = t]− P[Yi(t) = y, Ti(1 − t) = t]

= P[Yi(t) = y, Ti(t) = t|Zi = t]− P[Yi(t) = y, Ti(1 − t) = t|Zi = 1 − t]

= P[Yi = y, Ti = t|Zi = t]− P[Yi = y, Ti = t|Zi = 1 − t],

where the first and the second equality uses IV monotonicity in Assumption 2.1, the third equality uses IV
exogeneity in Assumption 2.1. Now, the desired results follow immediately.
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I.2 Proof of Lemma 4.2

By the monotone treatment response assumption in Assumption 2.1, P[Yi(1) = 1, Yi(0) = 1|Ti(1) >

Ti(0)] = P[Yi(0) = 1|Ti(1) > Ti(0)]. The desired result follows immediately from Lemma 4.1 that
P[Yi(0) = 1|Ti(1) > Ti(0)] is identifiable.

The result for P[Yi(1) = 0, Yi(0) = 0|Ti(1) > Ti(0)] can be derived analogously by observing that
monotone treatment response assumption in Assumption 2.1 implies [Yi(1) = 0, Yi(0) = 0] = [Yi(1) = 0]
and using Lemma 4.1.

For P[Yi(1) = 1, Yi(0) = 0|Ti(1) > Ti(0)], note that the monotone treatment response assumption
in Assumption 2.1 implies P[Yi(1) = 1, Yi(0) = 0|Ti(1) > Ti(0)] = E[Yi(1) − Yi(0)|Ti(1) > Ti(0)]. By
Theorem 1 in Imbens and Angrist (1994), E[Yi(1) − Yi(0)|Ti(1) > Ti(0)] is identifiable under the IA IV
assumptions.

I.3 Proof of Theorem 5.1

For E[g(Xi) | Yi(0) = 0, Ti(1) > Ti(0)]:

E[g(Xi) | Yi(0) = 0, Ti(1) > Ti(0)] =
E[g(Xi)1{Yi(0) = 0, Ti(1) > Ti(0)}]

P[Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(0) = 0, Ti(1) > Ti(0)}]

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]
,

where the second equality uses Lemma 4.1.

For E[g(Xi)1{Yi(0) = 0, Ti(1) > Ti(0)}]:

E[g(Xi)1{Yi(0) = 0, Ti(1) > Ti(0)}]

= E[g(Xi)1{Yi(0) = 0, Ti(0) = 0}]− E[g(Xi)1{Yi(0) = 0, Ti(1) = 0}]

= E[g(Xi)1{Yi(0) = 0, Ti(0) = 0} | Zi = 0]− E[g(Xi)1{Yi(0) = 0, Ti(1) = 0} | Zi = 1]

= E[g(Xi)1{Yi = 0, Ti = 0} | Zi = 0]− E[g(Xi)1{Yi = 0, Ti = 0} | Zi = 1],

where the first equality uses the IV monotonicity in Assumption 2.1, the second equality uses the IV inde-
pendence in Assumption 2.1 and a fact that independence is preserved under measurable transform (e.g.,
see Theorem 2.1.6. in Durrett (2010)).

I.4 Proof of Proposition 5.1

The desired results follow immediately by using the identical arguments in Theorem 5.1.

I.5 Proof of Theorem 5.2

For E[g(Xi) | Yi(1) = Yi(0) = 1, Ti(1) > Ti(0)]. Note that the monotone treatment response assumption
in Assumption 2.1 implies [Yi(1) = Yi(0) = 1] = [Yi(0) = 1]. Now, the desired result follows immediately
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from Proposition 5.1.

Similarly, by Proposition 5.1 and the fact that [Yi(1) = Yi(0) = 0] = [Yi(1) = 0] which is implied by
the monotone treatment response assumption in Assumption 2.1, the desired result for E[g(Xi) | Yi(1) =

Yi(0) = 1, Ti(1) > Ti(0)] follows immediately.

For E[g(Xi) | Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)], we have the following:

E[g(Xi) | Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)}]

P[Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)}]

E[Yi | Zi = 1]− E[Yi | Zi = 0]
,

where the second equality uses Theorem 1 in Imbens and Angrist (1994).

For E[g(Xi)1{Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)}]:

E[g(Xi)1{Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)}]

= E[g(Xi)(Yi(1)− Yi(0))(Ti(1)− Ti(0))]

= E[g(Xi)(Ti(1)Yi(1) + (1 − Ti(1))Yi(0)]

− E[g(Xi)(Ti(0)Yi(1) + (1 − Ti(0))Yi(0)]

= E[g(Xi)(Ti(1)Yi(1) + (1 − Ti(1))Yi(0) | Zi = 1]

− E[g(Xi)(Ti(0)Yi(1) + (1 − Ti(0))Yi(0) | Zi = 0]

= E[g(Xi)1{Yi = 1} | Zi = 1]− E[g(Xi)1{Yi = 1} | Zi = 0],

where the third equality uses the IV independence assumption in Assumption 2.1.

I.6 Proof of Proposition 5.2

First, consider E[g(Xi)1{Yi(1) = 1} | Yi(0) = 1, Ti(1) > Ti(0)] and E[g(Xi)1{Yi(0) = 0} | Yi(1) =

0, Ti(1) > Ti(0)]. For t ∈ {0, 1}:

E[g(Xi)1{Yi(t) = t} | Yi(1 − t) = t, Ti(1) > Ti(0)] = E[g(Xi) | Yi(1 − t) = t, Ti(1) > Ti(0)],

where the equality follows from the outcome monotonicity assumption in Assumption 2.1.

Second, consider E[g(Xi)1{Yi(1) = 1} | Yi(0) = 0, Ti(1) > Ti(0)] and E[g(Xi)1{Yi(0) = 0} | Yi(1) =

1, Ti(1) > Ti(0)]. For t ∈ {0, 1}:

E[g(Xi)1{Yi(1 − t) = 1 − t} | Yi(t) = t, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(1 − t) = 1 − t, Yi(t) = t, Ti(1) > Ti(0)}]

P[Yi(t) = t, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1} | Zi = 1]− E[g(Xi)1{Yi = 1} | Zi = 0]

P[Yi = t, Ti = t | Zi = t]− P[Yi = t, Ti = t | Zi = 1 − t]
,
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where the second equality uses Lemma 4.1 and Theorem 5.2.

Finally, consider E[g(Xi)1{Yi(1) = 0} | Yi(0) = 0, Ti(1) > Ti(0)] and E[g(Xi)1{Yi(0) = 1} | Yi(1) =

1, Ti(1) > Ti(0)]. For t ∈ {0, 1}:

E[g(Xi)1{Yi(1 − t) = t} | Yi(t) = t, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(1 − t) = t, Yi(t) = t, Ti(1) > Ti(0)}]

P[Yi(t) = t, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(1 − t) = t, Ti(1) > Ti(0)}]

P[Yi(t) = t, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = t, Ti = 1 − t} | Zi = 1 − t]− E[g(Xi)1{Yi = t, Ti = 1 − t} | Zi = t]

P[Yi = t, Ti = t | Zi = t]− P[Yi = t, Ti = t | Zi = 1 − t]
,

where the second eqaulity uses the monotone treatment response assumption in Assumption 2.1, the third
equality uses Lemma 4.1 and Theorem 5.2.

I.7 Proof of Proposition D.1

For E[g(Xi)|Yi(t) = y, Ti(1) = Ti(0) = t], where t ∈ {0, 1} and y ∈ {0, 1}, we have the following:

E[g(Xi)|Yi(t) = y, Ti(1) = Ti(0) = t] = E[g(Xi)|Yi(t) = y, Ti(1 − t) = t]

= E[g(Xi)|Yi(t) = y, Ti(1 − t) = t, Zi = 1 − t]

= E[g(Xi)|Yi = y, Ti = t, Zi = 1 − t],

where the first equality uses the IV monotonicity assumption in Assumption 2.1, the second equality uses
the IV independence assumption in Assumption 2.1.

I.8 Proof of Claim 7.1

Note that among compliers, Ti = Zi. Now the desired result follows immediately by observing that Zi is
exogenous assumed in Assumption 2.1 and using Theorem 6 in Jun and Lee (2018).

I.9 Proof of Theorem 7.1

Recall the formulas of the approximated θ̃DK and the identified θlocal from Theorem 6 in Jun and Lee (2018):

θ̃DK =
P[Yi = 1|Zi = 1]− P[Yi = 1|Zi = 0]

(P[Ti = 1|Zi = 1]− P[Ti = 1|Zi = 0])× (1 − P[Yi = 1|Zi = 0])

θlocal =
P[Yi = 1|Zi = 1]− P[Yi = 1|Zi = 0]

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]
,

thus, θ̃DK = θlocal if and only if:

(P[Ti = 1|Zi = 1]− P[Ti = 1|Zi = 0])× P[Yi = 0|Zi = 0]
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= P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]. (4)

Consider the first case in which there is non-compliance in the control group, i.e., P[Ti = 1|Zi = 1] = 1.
In this case, there is no never-taker. Then, for the denominator of θ̃DK:

(P[Ti = 1|Zi = 1]− P[Ti = 1|Zi = 0])× (1 − P[Yi = 1|Zi = 0])

= (1 − P[Ti = 1|Zi = 0])× (P[Yi = 0|Zi = 0])

= P[Ti = 0|Zi = 0]× (P[Yi = 0, Ti = 0|Zi = 0] + P[Yi = 0, Ti = 1|Zi = 0])

= P[Ti(0) = 0]× (P[Yi(0) = 0, Ti(0) = 0] + P[Yi(1) = 0, Ti(0) = 1]),

where the first equality uses the assumption that there is non-compliance in the control group. For the
denominator of θ̃DK, by the assumption that there is non-compliance in the control group:

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]

= P[Yi = 0, Ti = 0|Zi = 0]

= P[Yi(0) = 0, Ti(0) = 0].

Thus, by Equation 4, θ̃DK = θlocal if and only if:

P[Yi(0) = 0, Ti(0) = 0] = P[Ti(0) = 0]× (P[Yi(0) = 0, Ti(0) = 0] + P[Yi(1) = 0, Ti(0) = 1])

⇔ P[Ti(0) = 1]× P[Yi(0) = 0, Ti(0) = 0] = P[Ti(0) = 0]× P[Yi(1) = 0, Ti(0) = 1]

⇔ P[Yi(0) = 0|Ti(0) = 0] = P[Yi(1) = 0|Ti(0) = 1].

Consider the second case in which there is non-compliance in the treatment group, i.e., P[Ti = 0|Zi =

0] = 1. In this case, there is no always-taker. Then, for the denominator of θ̃DK:

(P[Ti = 1|Zi = 1]− P[Ti = 1|Zi = 0])× (1 − P[Yi = 1|Zi = 0])

= P[Ti = 1|Zi = 1]× P[Yi = 0, Ti = 0|Zi = 0]

= P[Yi = 0, Ti = 0|Zi = 0]− P[Ti = 0|Zi = 1]× P[Yi = 0, Ti = 0|Zi = 0],

where the first equality uses the assumption that there is non-compliance in the treatment group. Thus, by
Equation 4, θ̃DK = θlocal if and only if:

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]

= P[Yi = 0, Ti = 0|Zi = 0]− P[Ti = 0|Zi = 1]× P[Yi = 0, Ti = 0|Zi = 0]

⇔ P[Yi = 0, Ti = 0|Zi = 1] = P[Ti = 0|Zi = 1]× P[Yi = 0, Ti = 0|Zi = 0]

⇔ P[Yi(0) = 0, Ti(1) = 0] = P[Ti(1) = 0]× P[Yi(0) = 0, Ti(0) = 0]

⇔ P[Yi(0) = 0|Ti(1) = 0] = P[Yi(0) = 0]

⇔ Yi(0) ⊥⊥ Ti(1),

where the third line uses the assumption that P[Ti(0) = 0] = 1.
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I.10 Proof of Proposition A.1

Note that the marginal distribution of potential outcomes among compliers is point identified (Imbens
and Rubin, 1997; Abadie, 2003). Moreover, we can rewrite the marginal distribution of potential outcomes
among compliers as a system of linear equations of the joint distribution of potential outcomes among
compliers:

1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 1 1 1 1





P[Yi(0) = −1, Yi(1) = −1|Ti(1) > Ti(0)]
P[Yi(0) = −1, Yi(1) = 0|Ti(1) > Ti(0)]
P[Yi(0) = −1, Yi(1) = 1|Ti(1) > Ti(0)]
P[Yi(0) = 0, Yi(1) = 0|Ti(1) > Ti(0)]
P[Yi(0) = 0, Yi(1) = 1|Ti(1) > Ti(0)]
P[Yi(0) = 1, Yi(1) = 1|Ti(1) > Ti(0)]


=



P[Yi(0) = −1|Ti(1) > Ti(0)]
P[Yi(0) = 0|Ti(1) > Ti(0)]
P[Yi(0) = 1|Ti(1) > Ti(0)]
P[Yi(1) = −1|Ti(1) > Ti(0)]
P[Yi(1) = 0|Ti(1) > Ti(0)]
P[Yi(1) = 1|Ti(1) > Ti(0)]
1


,

where the rank of the coefficient matrix is five. Thus, there is no unique solution to the system of linear
equations above.

I.11 Proof of Corollary A.1

The desired results follow immediately using the identical arguments in Lemma 4.1 and Lemma 4.2.

I.12 Proof of Corollary A.2

The desired result follows immediately by using the result in Heckman and Vytlacil (2005) and Carneiro
and Lee (2009) and the monotone treatment response assumption in Assumption A.1. Since the argument
is brief, we include it here for completeness.

Note that by the monotone treatment response assumption in Assumption A.2 and the fact that Yi is
binary:

P[Yi(1) = 1, Yi(0) = 0 | Vi = v] = E[Yi(1)− Yi(0) | Vi = v]

P[Yi(1) = Yi(0) = 1 | Vi = v] = P[Yi(0) = 1 | Vi = v]

P[Yi(1) = Yi(0) = 0 | Vi = v] = P[Yi(1) = 0 | Vi = v].

To identify E[Yi(1)− Yi(0) | Vi = v], consider E[Yi | Vi = v]:

E[Yi | Vi = v] = E[Yi(0) | P(Zi) = v] + E[Ti(Yi(1)− Yi(0)) | P(Zi) = v]

= E[Yi(0) | P(Zi) = v] + E[Yi(1)− Yi(0) | Ti = 1, P(Zi) = v]P[Ti = 1 | P(Zi) = v]

= E[Yi(0) | P(Zi) = v] + E[Yi(1)− Yi(0) | Vi ≤ v, P(Zi) = v]P[Vi ≤ v | P(Zi) = v]

= E[Yi(0)] + E[Yi(1)− Yi(0) | Vi ≤ v]v

= E[Yi(0)] + E[(Yi(1)− Yi(0))1{Vi ≤ v}]
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= E[Yi(0)] + E[1{Vi ≤ v}E[Yi(1)− Yi(0) | Vi = u]]

= E[Yi(0)] +
∫ v

0
E[Yi(1)− Yi(0) | Vi = u]du,

where the third equality uses the selection equation in Assumption A.2, the fourth equality uses the in-
dependence of Zi and Vi ∼ U[0, 1] in Assumption A.2. Now the desired result follows immediately by
differentiating both sides of the equation with respect to v.

To identify P[Yi(0) = 1 | Vi = v], consider (1 − v)E[g(Yi) | P(Zi) = v, Ti = 0], where g is a measurable
map:

(1 − v)E[g(Yi) | P(Zi) = v, Ti = 0] = (1 − v)E[g(Yi(0)) | Vi > v]

= E[g(Yi(0))1{Vi > v}]

= E[1{Vi > v}E[g(Yi(0)) | Vi = u]]

=
∫ 1

v
E[g(Yi(0)) | Vi = u]du,

where the first equality uses the selection equation in Assumption A.2, the fourth equality uses Vi ∼ U[0, 1]
in Assumption A.2. Now the desired result follows immediately by differentiating both sides of the equa-
tion with respect to v and defining g as: g(Yi) = 1{Yi = 1}.

To identify P[Yi(1) = 0 | Vi = v], consider vE[g(Yi) | P(Zi) = v, Ti = 1], where g is a measurable map:

vE[g(Yi) | P(Zi) = v, Ti = 1] = vE[g(Yi(1)) | Vi ≤ v]

= E[g(Yi(1))1{Vi ≤ v}]

= E[1{Vi ≤ v}E[g(Yi(1)) | Vi = u]]

=
∫ v

0
E[g(Yi(1)) | Vi = u]du,

where the first equality uses the selection equation in Assumption A.2, the fourth equality uses Vi ∼ U[0, 1]
in Assumption A.2. Now the desired result follows immediately by differentiating both sides of the equa-
tion with respect to v and defining g as: g(Yi) = 1{Yi = 0}.

I.13 Proof of Corollary B.1

The desired results follow immediately using the identical arguments in Theorem 5.2.

I.14 Proof of Corollary B.2

For E[g(Xi) | Yi(1) = 1, Yi(0) = 0, Vi = v]:

E[g(Xi) | Yi(1) = 1, Yi(0) = 0, Vi = v] =
E[g(Xi)1{Yi(1) = 1, Yi(0) = 0} | Vi = v]

P[Yi(1) = 1, Yi(0) = 0 | Vi = v]

=
E[g(Xi)(Yi(1)− Yi(0)) | Vi = v]

E[Yi(1)− Yi(0) | Vi = v]
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=
∂

∂v E[g(Xi)Yi | P(Zi) = v]
∂

∂v E[Yi | P(Zi) = v]
,

where the second equality uses the monotone treatment response assumption, and the third equality uses
the independence assumption in Assumption A.2 and Corollary A.2.

Now. consider E[g(Xi) | Yi(1) = Yi(0) = 1, Vi = v] and E[g(Xi) | Yi(1) = Yi(0) = 0, Vi = v]. For
t ∈ {0, 1}:

E[g(Xi) | Yi(1) = Yi(0) = 1 − t, Vi = v] = E[g(Xi) | Yi(t) = 1 − t, Vi = v]

=
E[g(Xi)1{Yi(t) = 1 − t} | Vi = v]

P[Yi(t) = 1 − t | Vi = v]
,

where the second equality uses the monotone treatment response assumption. Now the desired result
follows immediately from the independence assumption in Assumption A.2 and Corollary A.2.

I.15 A Glivenko-Cantelli Theorem for Conditional Cumulative Distribution Func-
tion

In fact, we can strengthen the statement in Appendix E from convergence in probability to almost sure
convergence:

sup
x∈R

∣∣P̂[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]− P[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]
∣∣ a.s.−→ 0.

Moreover, the uniform convergence result follows immediately from the uniform convergence of the em-
pirical conditional cumulative distribution function. Thus, we only provide a proof for the uniform conver-
gence of the empirical conditional cumulative distribution function in this section.

Theorem I.1. Consider a pair of random variable (Xi, Zi) : (Ω,F ) −→ (R2, σ(B(R2))), where F is a sigma
field on the outcome space Ω, and σ(B(R2)) denotes the Borel sigma algebra on R2. Let A ∈ σ(B(R2))

with P[Zi ∈ A] ̸= 0. Then:

sup
x∈R

∣∣P̂[Xi ≤ x|Zi ∈ A]− P[Xi ≤ x|Zi ∈ A]
∣∣ a.s.−→ 0,

where P̂[Xi ≤ x|Zi ∈ A] = En [1{Xi≤x,Zi∈A}]
En [1{Zi∈A}] with En denotes sample average.

Proof. We first show that supx∈R |En[Xi ≤ x, Zi ∈ A]− P[Xi ≤ x, Zi ∈ A]| a.s.−→ 0. For 1 ≤ j ≤ k − 1, let
xj,k = inf{y : P[Xi ≤ x, Zi ∈ A] ≥ j

k P[Zi ∈ A]}. Thus, by the Strong Law of Large Numbers, there exists
Nk such that if n ≥ Nk, then:

|En[Zi ∈ A]− P[Zi ∈ A]| < P[Zi ∈ A]

k
,∣∣∣En[Xi ≤ xj,k, Zi ∈ A]− P[Zi ∈ A]

∣∣∣ < P[Zi ∈ A]

k
,∣∣∣En[Xi < xj,k, Zi ∈ A]− P[Xi < xj,kZi ∈ A]

∣∣∣ < P[Zi ∈ A]

k
,
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for 1 ≤ j ≤ k − 1. With x0,k = −∞ and xk,k = ∞, then the last two inequalities hold for j = 0 and j = k.

For x ∈ (xj−1,k, xj,k) with 1 ≤ j ≤ k and n ≥ Nk:

En[Xi ≤ x, Zi ∈ A] ≤ En[Xi < xj,k, Zi ∈ A] ≤ E[Xi < xj,k, Zi ∈ A] +
P[Zi ∈ A]

k

≤ E[Xi < xj−1,k, Zi ∈ A] +
2P[Zi ∈ A]

k
≤ E[Xi ≤ x, Zi ∈ A] +

2P[Zi ∈ A]

k
,

En[Xi ≤ x, Zi ∈ A] ≥ En[Xi ≤ xj−1,k, Zi ∈ A] ≥ E[Xi ≤ xj−1,k, Zi ∈ A]− P[Zi ∈ A]

k

≥ E[Xi ≤ xj,k, Zi ∈ A]− 2P[Zi ∈ A]

k
≥ E[Xi ≤ x, Zi ∈ A]− 2P[Zi ∈ A]

k
,

thus, we conclude that supx∈R |En[Xi ≤ x, Zi ∈ A]− P[Xi ≤ x, Zi ∈ A]| a.s.−→ 0.

For supx∈R

∣∣P̂[Xi ≤ x|Zi ∈ A]− P[Xi ≤ x|Zi ∈ A]
∣∣:

sup
x∈R

∣∣P̂[Xi ≤ x|Zi ∈ A]− P[Xi ≤ x|Zi ∈ A]
∣∣

= sup
x∈R

∣∣∣∣En[1{Xi ≤ x, Zi ∈ A}]
En[1{Zi ∈ A}] − P[Xi ≤ x|Zi ∈ A]

∣∣∣∣
= sup

x∈R

∣∣∣∣En[1{Xi ≤ x, Zi ∈ A}]
En[1{Zi ∈ A}] − En[1{Xi ≤ x, Zi ∈ A}]

P[{Zi ∈ A}] +
En[1{Xi ≤ x, Zi ∈ A}]

P[{Zi ∈ A}] − P[Xi ≤ x|Zi ∈ A]

∣∣∣∣
≤ sup

x∈R

∣∣∣∣En[1{Xi ≤ x, Zi ∈ A}]
En[1{Zi ∈ A}] − En[1{Xi ≤ x, Zi ∈ A}]

P[{Zi ∈ A}]

∣∣∣∣
+ sup

x∈R

∣∣∣∣En[1{Xi ≤ x, Zi ∈ A}]
P[{Zi ∈ A}] − P[Xi ≤ x|Zi ∈ A]

∣∣∣∣
=

∣∣∣∣ 1
En[1{Zi ∈ A}] −

1
P[{Zi ∈ A}]

∣∣∣∣ sup
x∈R

|En[1{Xi ≤ x, Zi ∈ A}]|

+
1

P[Zi ∈ A]
sup
x∈R

|En[1{Xi ≤ x, Zi ∈ A}]− P[Xi ≤ x, Zi ∈ A]|

≤
∣∣∣∣ 1
En[1{Zi ∈ A}] −

1
P[{Zi ∈ A}]

∣∣∣∣+ 1
P[Zi ∈ A]

sup
x∈R

|En[1{Xi ≤ x, Zi ∈ A}]− P[Xi ≤ x, Zi ∈ A]|

a.s.−→ 0,

where the first inequality uses the triangle inequality, the second inequality uses the fact that:

sup
x∈R

|En[1{Xi ≤ x, Zi ∈ A}]| ≤ 1,

which holds by construction, and the last line uses the Strong Law of Large Numbers and the continuous
mapping theorem.

I.16 Proof of Proposition H.2

First note that for P[Xi ∈ A, Yi = 0, Ti = 0|Zi = 0]− P[Xi ∈ A, Yi = 0, Ti = 0|Zi = 1]:

P[Xi ∈ A, Yi = 0, Ti = 0|Zi = 0]− P[Xi ∈ A, Yi = 0, Ti = 0|Zi = 1]
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= P[Yi = 0, Ti = 0|Zi = 0, Xi ∈ A]P[Xi ∈ A|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1, Xi ∈ A]P[Xi ∈ A|Zi = 1]

= (P[Yi = 0, Ti = 0|Zi = 0, Xi ∈ A]− P[Yi = 0, Ti = 0|Zi = 1, Xi ∈ A])× P[Xi ∈ A],

where the second equality uses the assumption that Xi ⊥⊥ Zi.

Thus, to show the numerical equivalence between the two formulas in Theorem 5.1 and Proposition H.1,
it suffices to show the equivalence between the numerators in the two formulas:

P[Ti = 1|Xi ∈ A, Zi = 1]− P[Ti = 1|Xi ∈ A, Zi = 0]− E[κ0Yi|Xi ∈ A]

= P[Yi = 0, Ti = 0|Zi = 0, Xi ∈ A]− P[Yi = 0, Ti = 0|Zi = 1, Xi ∈ A].

Observe that for P[Ti = 1|Xi ∈ A, Zi = 1]− P[Ti = 1|Xi ∈ A, Zi = 0]− E[κ0Yi|Xi ∈ A]:

P[Ti = 1|Xi ∈ A, Zi = 1]− P[Ti = 1|Xi ∈ A, Zi = 0]− E[κ0Yi|Xi ∈ A]

= P[Ti = 0|Xi ∈ A, Zi = 0]− P[Ti = 0|Xi ∈ A, Zi = 1]− E[κ0Yi|Xi ∈ A]

= P[Yi = 1, Ti = 0|Xi ∈ A, Zi = 0] + P[Yi = 0, Ti = 0|Xi ∈ A, Zi = 0]

− P[Yi = 1, Ti = 0|Xi ∈ A, Zi = 1]− P[Yi = 0, Ti = 0|Xi ∈ A, Zi = 1]− E[κ0Yi|Xi ∈ A]

We now proceed to simplify E[κ0Yi|Xi ∈ A]:

E[κ0Yi|Xi ∈ A]

= E[κ0Yi|Xi ∈ A, Ti = 0, Zi = 0]× P[Ti = 0, Zi = 0|Xi]

+ E[κ0Yi|Xi ∈ A, Ti = 0, Zi = 1]× P[Ti = 0, Zi = 1|Xi]

+ E[κ0Yi|Xi ∈ A, Ti = 1, Zi = 0]× P[Ti = 1, Zi = 0|Xi]

+ E[κ0Yi|Xi ∈ A, Ti = 1, Zi = 1]× P[Ti = 1, Zi = 1|Xi]

= E[κ0Yi|Xi ∈ A, Ti = 0, Zi = 0]× P[Ti = 0, Zi = 0|Xi]

+ E[κ0Yi|Xi ∈ A, Ti = 0, Zi = 1]× P[Ti = 0, Zi = 1|Xi]

=
1

P[Zi = 0]
× P[Yi = 1|Xi ∈ A, Ti = 0, Zi = 0]× P[Ti = 0, Zi = 0|Xi ∈ A]

− 1
P[Zi = 1]

× P[Yi = 1|Xi ∈ A, Ti = 0, Zi = 1]× P[Ti = 0, Zi = 1|Xi ∈ A]

=
1

P[Zi = 0|Xi ∈ A]
× P[Yi = 1|Xi ∈ A, Ti = 0, Zi = 0]× P[Ti = 0, Zi = 0|Xi ∈ A]

− 1
P[Zi = 1|Xi ∈ A]

× P[Yi = 1|Xi ∈ A, Ti = 0, Zi = 1]× P[Ti = 0, Zi = 1|Xi ∈ A]

= P[Yi = 1, Ti = 0|Zi = 0, Xi ∈ A]− P[Yi = 1, Ti = 0|Zi = 1, Xi ∈ A]

where the second equality uses the fact that Ti = 1 implies κ0 = 0, the fourth inequality uses IV indepen-
dence assumption, the fifth equality uses the Bayes rule.

Now the desired equivalence result follows immediately.
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