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Abstract

In the empirical study of persuasion, researchers often use a binary instrument to encourage individu-
als to consume information and take some action. Under the Imbens-Angrist instrumental variable model
assumptions, the binary IV model can recover the proportion of people who take the action under the
treatment and control conditions. I show that with the monotone treatment response assumption, it is
possible to identify the joint distributions of potential outcomes among compliers. This is necessary to
identify the percentage of persuadable individuals and their statistical characteristics. Specifically, I de-
velop a weighting method that helps researchers identify the statistical characteristics of persuasion types:
compliers and always-persuaded, compliers and persuaded, and compliers and never-persuaded. These
findings extend the "k weighting” results in Abadie (2003). I also provide a sharp test on the two sets of
identification assumptions. The test boils down to testing whether there exists a nonnegative solution to
a possibly under-determined system of linear equations with known coefficients. I also develop a simple
sensitivity analysis to assess the sensitivity of the results with respect to the monotone treatment response
assumption. An application based on Green et al. (2003) is provided. The result shows that among com-
pliers, roughly 10% voters are persuadable. The results are consistent with the findings that voters’ voting
behaviors are highly persistent.
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1 Introduction

In the empirical study of persuasion, researchers are interested in the treatment effect of information on
political choices. Since the decision to consume information is endogenous, researchers often rely on in-
strumental variables (IVs) that capture exogenous variation in that decision making process. Previous re-
search on instrumental variables has focused on the marginal distribution of potential outcomes: the share
of people that take an action under treatment and the share of people that do so under control (Imbens and
Rubin, 1997). However, persuasion involves moving a single person from one kind of action to another.
That is, persuasion requires the joint distribution of potential outcomes. This paper shows that under cer-
tain assumptions, a binary instrumental variable (IV) model can identify the frequency of individuals who
are persuadable, those that are “always persuaded”, and those that are “never persuaded”, and describe
their profiles in terms of pre-treatment covariates.

The results that follow require two sets of assumptions: 1) the Imbens-Angrist IV (the IA IV, hereafter)
assumptions (Imbens and Angrist, 1994), 2) the monotone treatment response assumption (Manski, 1997;
Jun and Lee, 2018). Under the first set of assumptions, we can point identify the marginal distribution of
potential outcomes (Imbens and Rubin, 1997; Abadie, 2002, 2003). With the monotone treatment response
assumption we can classify individuals to three outcome types: 1) always-persuaded, those who will take
the action of interest regardless of whether receive the information treatment or not; 2) never-persuaded,
those who will not take the action of interest regardless of the treatment; 3) persuaded, those who will take
the action of interest only if they are exposed to the information treatment.

We first show that in a binary IA IV model with the monotone treatment response assumption, the
joint distribution of potential outcomes among compliers is point identified. The intuition is that with
the monotone treatment response assumption, the percentage of persuaded individuals among compliers
is equal to the local average treatment effect (LATE). Under monotone treatment response, the event in
which an individual is always-persuaded is equivalent to the event that an individual would take action
without treatment. The latter event only involves the marginal distribution of potential outcomes, which is
point identified by the argument in Imbens and Rubin (1997). This is because, under monotone treatment
response, treated individuals are at least as likely to take action as an individual who is untreated. Similarly,
under monotone treatment response, the event in which an individual is never-persuaded is equivalent to
the event that an individual would not take action with treatment.

Given the ability to identify persuasion types, we can also profile them by using pre-treatment covari-
ates. We begin by extending the x weighting result in Abadie (2003) to the local persuasion rate developed
by Jun and Lee (2018). Specifically, we show that with the IA IV assumption, we can identify the statistical
characteristics measured by pre-treatment covariates of the locally persuadable, by which I mean those who
are compliers and who will not take the action of interest without being exposed to the treatment.

We then extend this analysis to show that, under the monotone treatment response assumption, we
can characterize the statistical characteristics across persuasion types: always-persuaded compliers, never-
persuaded compliers, and persuaded compliers. This result greatly extends the classic ¥ weighting result
in Abadie (2003) because we now can learn the statistical characteristics of different outcome types among
compliers.

The new identification results follow from the monotone treatment response assumption, which may not



apply in all settings. To guide researchers in the applicability of these results, I provide a sharp test on the
two sets of identification assumptions and a sensitivity analysis. The sharp test closely relates to the result
in Balke and Pearl (1997). The test exploits the fact that a binary IA IV model with monotone treatment
response assumption implies an under-determined system of linear equations with known coefficients.
Thus, testing the validity of the two sets of identification assumptions boils down to testing whether there
exists a nonnegative solution to the implied system of linear equations. We implement the test by using a
recent result with a subsampling method (Bai et al., 2022). I also provide a sensitivity result based on the
idea in Balke and Pearl (1997). Specifically, since in the binary IV model, the observed quantity is a linear
system equation of the unobserved outcome and compliance types, we can vary the size of the violation of
the monotone treatment response assumption among compliers to see how our point identification results

change.

We also provide estimation and inference results. Given the two sets of assumptions we make, the
estimation can be done by using sample analogs. We also provide a formal justification for the bootstrap
validity by using a powerful result in Fang and Santos (2019) when there is no weak identification. To
incorporate the weak identification case, we also provide a Anderson-Rubin type test that is robust to weak
identification (Staiger and Stock, 1997).

Finally, I provide an application based on Green et al. (2003). Green et al. (2003) conduct a field exper-
iment to use the GOTV program to persuade voters to vote. Specifically, the instrument is the randomly
assigned GOTV program. The treatment is the actual take-up of the GOTV program. The outcome is
whether or not voters turn out to vote. The results show that among compliers, around 10% individuals
are persuadable. Moreover, we find that among compliers, the chance for always-persuaded voters to vote
in the last presidential election is the highest, and the chance for never-persuaded voters to vote in the last
presidential election is the lowest. These results are consistent with the interpretation that voters” voting
behaviors are habit-forming, hence are highly persistent (Gerber et al., 2003). Moreover, our results show
that the voting propensity of those persuaded is close to those always-persuaded, which is consistent with
the finding in Enos et al. (2014) that GOTV program mobilizes high-propensity voters. Moreover, in Bridge-
port, the results show that the chance of being a Democrat among the persuaded voters and compliers is
high, though the estimate is quite noisy.

My analysis is closely related to Abadie (2003), who provides results on identifying the statistical charac-
teristics measured by pre-treatment covariates for compliers. We extend the Abadie’s «x result by studying a
binary IA IV model with an additional monotone treatment response assumption. With both assumptions,
researchers can learn the statistical characteristics measured by the pre-treatment covariates of the outcome

types (i.e., always-persuaded, never-persuaded, and persuaded) among compliers.

Moreover, my paper also relates to the literature on identifying the distribution of potential outcomes in
an IV model. Prior work proposes three approaches: 1) focuses on identifying the marginal distribution of
potential outcomes among compliers (Imbens and Rubin, 1997; Abadie, 2002; Abadie et al., 2002; Abadie,
2003); 2) makes a rank invariance assumption to point identify quantile treatment effect (Chernozhukov
and Hansen, 2004, 2005; Vuong and Xu, 2017; Feng et al., 2019); 3) constructs sharp bounds on the joint
distribution of potential outcomes (Torgovitsky, 2019; Russell, 2021). In this paper, the identification of the
joint distribution of potential outcomes among compliers depends on the binary nature of the outcome and

the assumption of the direction of the treatment effect.



My paper also closely relates to Jun and Lee (2018). Jun and Lee (2018) provides a set of point/partial
identification results for the persuasion rate and the local persuasion rate under different data scenarios.
One main focus of my paper is to profile the persuasion types among compliers. Moreover, I provide a
sharp test on the assumptions in the binary IV model for persuasion. The sharp test itself also speaks
to a large literature on testing IA IV model validity (Balke and Pearl, 1997; Heckman and Vytlacil, 2005;
Kitagawa, 2015; Huber and Mellace, 2015; Wang et al., 2017; Mourifié and Wan, 2017; Machado et al., 2019;
Kédagni and Mourifié, 2020). The sharp test follows the tradition of the literature by using the simple fact
that the observed quantity in the data is a linear combination of the probability of the unobserved outcome
and compliance types. Furthermore, I also provide a necessary and sufficient condition under which the
“approximated” persuasion rate proposed by DellaVigna and Kaplan (2007) equals the local persuasion
rate proposed by Jun and Lee (2018) when there is one-sided non-compliance in the encouragement design.
Finally, I also provide a simple sensitivity analysis approach to assess the robustness of the results for the
violation of the monotone treatment response assumption.

The remainder of the paper proceeds as follows. In Section 2, we set up an econometric model of persua-
sion. We then define the target parameters in Section 3. Section 4 provides the point identification results
of the distribution of potential outcomes among compliers. Section 5 provides results identifying the statis-
tical characteristics of persuasion types among compliers. Section 6 provides the estimation and inference
results. Section 7 provides discussions on comparing the local persuasion rate with existing estimands, a
sharp test on the identification assumptions, and a sensitivity analysis on the monotone treatment response

assumption. Section 8 provides an application. The last section concludes.

2 Model Setup

In empirical study of persuasion, researchers often collect data on a binary information treatment T;, and
a binary behavioral outcome Y;. In the GOTV experiment, the outcome of interest is whether or not voters
vote, and the information treatment is the information on the timing and the location of the upcoming
election. Since information consumption is endogenous, researchers often employ an instrument Z; which
creates exogenous variations for an individual’s information consumption decision. In many experiments,
the instrument Z; is also binary. In the GOTV experiment, the instrument is the randomly assigned access
to the GOTV treatment, which contains information on the timing and location of the upcoming election.
Besides the aforementioned variables, researchers also collect pre-treatment covariates X; € RX.! Define
Y;(1) and Y;(0) as the potential outcomes that an individual would attain with and without being exposed
to the treatment, and T;(1) and T;(0) as the potential treatments that an individual would attain with and
without being exposed to the instrument. For a particular individual, the variable Y;(t,z) represents the

potential outcome that this individual would obtain if T; = t and Z; = z.

An econometric model of persuasion is a binary IA IV model with the monotone treatment response
assumption. Formally speaking, researchers make the following assumptions in an econometric model of

persuasion with the potential outcome and potential treatment notations.

Assumption 2.1. (Potential Outcome and Potential Treatment Model)

In what follows, I assume without loss of generality that k = 1.



1. Exclusion restriction: Y;(t,z) = Y;(t), for t,z € {0,1},

2. Exogenous instrument: Z; 11 (Y;(0),Y;(1), T;(0), T;(1), X;),

3. Firststage: P[T; = 1|Z; = 1] # P[T; = 1|Z; = 0],

4. IV Monotonicity: T;(1) > T;(0) holds almost surely,

5. Monotone treatment response: Y;(1) > Y;(0) holds almost surely with Y;(0) and Y;(1) being binary.

Remark 2.1. As pointed out by Machado et al. (2019), the results in Vytlacil (2002) imply that Assump-

tion 2.1 is equivalent to the following triangular system model:

1. Y;(¢) =1{U; < y(t)}, where v : T — R is a measurable function with (0) < (1),
2. Tij(z) =1{V; < v(z)}, where v : Z — R is a measurable function with v(0) < v(1),

3. Zi Il (V;, U;, Xi),
where U; is the latent utility in the outcome process, and V; is the latent utility in the selection process.

Assumptions 1 to 4 are the assumptions in the IA IV model. In what follows, we use the IA IV as-
sumptions and the LATE assumptions interchangeably to refer to Assumptions 1 to 4. Note that it is not
new to assume the direction of the treatment effect in econometrics literature (Manski, 1997; Manski and
Pepper, 2000; Okumura and Usui, 2014; Kim et al., 2018). This type of assumption is attractive when re-
searchers have strong prior for the direction of the treatment effect. Similar to the IV monotonicity in the IA
IV assumption, this assumption rules out the type of individuals who will take the action of interest if the
treatment switches off but will not take the action of interest if the treatment switches on. In other words,

this assumption assumes that there are no dissuaded people.

Assumption 2.1 can be applied in cases other than persuasion.” For instance, researchers are interested
in studying the effect of participating in a job training program on the decision to join a rebellion group in a
fragile state (Blattman and Annan, 2016; Blattman et al., 2017, 2020). Blattman and Annan (2016) conduct an
experiment in Liberia which randomly assigns a free agricultural training program to Liberian ex-fighters.
The treatment is the actual participation in the agricultural training program. The outcome of interest
is whether or not the Liberian ex-fighters work in the legal sector. Here, the IV monotonicity condition
is likely to hold because the program should decrease the cost of the training program for all of the ex-
fighters. The monotone treatment response assumption is also likely to hold: the training program should
weakly increase the human capital of the ex-fighters. Hence, the training program should weakly increase
ex-fighters” wage return from getting a job in the legal sector, which should increase their opportunity cost
of getting a job in the illegal sector.

By Assumption 2.1, we can classify individuals into 9 groups. Since the outcome is binary, the mono-
tone treatment response assumption implies that we can classify individuals as always-persuaded, never-
persuaded, and persuaded. By the IV monotonicity assumption, we can classify the individuals as always-
takers, never-takers, and compliers. The classification is presented in Table 1.

2Besides the applications mentioned in the main text, the binary IA IV model with monotone treatment response can further be
applied to the study of the persuasion effect of political messages on political behavior in democracy and autocracy (DellaVigna and
Kaplan, 2007; Enikolopov et al., 2011), the persuasion effect of uncensored internet on the views of censorship (Chen and Yang, 2019),
persuading donors to donate (Landry et al., 2006), etc.



Table 1: Types of Individuals
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Never-Persuaded Never-Takers
Persuaded Never-Takers
Always-Persuaded Never-Takers
Never-Persuaded Compliers
Persuaded Compliers
Always-Persuaded Compliers
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3 Target Parameters

In the empirical study of persuasion, researchers are interested in the “effect” of the information treatment
on individuals’ behaviors. One target parameter proposed by Jun and Lee (2018) is the local persuasion
rate:

Orocal = P[Y;(1) = 1]Y;(0) = 0, T;(1) > T;(0)].

The local persuasion rate measures the percentage of compliers who take the action of interest if exposed to
the treatment among those who will not take the action of interest without being exposed to the information
treatment.> In the GOTV experiment, the local persuasion rate measures the percentage of voters who
would vote if they had been exposed to the GOTV program among compliers and those who would not
vote were they not exposed to the GOTV program. Given Assumption 2.1, Jun and Lee (2018) have shown
that 6,4 is point identifiable.

Compared to the LATE, the local persuasion rate focuses on a smaller subpopulation. LATE is the
average treatment effect for compliers. The local persuasion rate further conditions on those who will not
take the action of interest without the information treatment (i.e., [Y;(0) = 0]). In the GOTV experiment, the
local persuasion rate conditions on those who will not vote without being exposed to the GOTV program
and those who comply with the experiment design.

We propose two sets of new target parameters in this paper. First, we are interested in the statistical
characteristics measured by pre-treatment covariates for the locally persuadable. Here, the locally per-
suadable is the subpopulation that 6}, conditions on: [Y;(0) = 0, T;(1) > T;(0)]. Learning the statistical
characteristics of the locally persuadable can help researchers assess the strength of the study’s external
validity. If the statistical characteristics of the locally persuadable are not similar to the general population,
researchers need to be cautious about generalizing their conclusion to the general population.

The second set of target parameters are the statistical characteristics measured by the pre-treatment
covariates of the persuasion types (i.e., always-persuaded, never-persuaded, and persuaded) among com-
pliers. Learning the statistical characteristics of the persuasion types among compliers can help researchers

3 As summarized in DellaVigna and Gentzkow (2010), another popular target parameter in the empirics of persuasion is the per-
suasion rate: 8 := P[Y;(1) = 1]Y;(0) = 0]. DellaVigna and Gentzkow (2010) suggests to use an estimand proposed in DellaVigna and
P[Y;=1|Z;=1]-P[Y;=1|Z;=0] 1
P[T;=1]Z;=1]-P[T;=1]Z;=0] ~ 1-P[Y;(0)
P[Y;(0) = 1]. As pointed out in Jun and Lee (2018), fpk is not a well defined conditional probability; hence, it does not measure the
persuasion rate for any subpopulation. Moreover, Jun and Lee (2018) show that under Assumption 2.1, 6 is not point identifiable; they
instead provide sharp bounds for 6.

Kaplan (2007) to measure 6: Opx = X = where researchers use P[Y; = 1|Z; = 0] to approximate



assess whether the experiment achieves specific goals or to assess the potential policy outcome of the ex-
periment. In the GOTV experiment, the researchers aim to mobilize the underrepresented minority to vote.
Hence, researchers can estimate the likelihood of the persuadable and compliers being an underrepresented
minority. Furthermore, researchers may also want to assess what types of voters they mobilized. For ex-
ample, they may want to know the likelihood of the mobilized voters being Democrats. If most of the
mobilized voters are Democrats, researchers can judge the policy impact of the mobilization effort.

4 Identification of the Potential Outcome Distributions for Compliers

In this section, we present the results on the identification of the joint distribution of potential outcomes
among compliers. We first present the well known point identification results on the marginal distribution
of potential outcomes among compliers under the IA IV assumptions. We then can use these marginal
distributions, as well as the monotone treatment response assumption, to point identify the joint distribu-
tion of potential outcomes among compliers. Finally, I show that the results are extendable to the case of a

non-binary instrument but not the the case of non-binary outcomes.

4.1 Identification of the Marginal Distribution of Potential Outcomes for Compliers

As is well known, given the IA IV assumptions, we can point identify the marginal distribution of potential
outcomes among compliers. This is a classic result in the LATE literature (Imbens and Rubin, 1997; Abadie,
2003; Jun and Lee, 2018) In other words, we can know the percentage of voters who will vote if they receive
the GOTV treatment and the percentage of voters who will vote if they do not receive the GOTV treat-
ment among compliers. Given that we are working with a binary IA IV model, we provide slightly more
simplified results. The results are presented in Lemma 4.1.

Lemma 4.1. Assume that the 1 to 4 in Assumption 2.1 hold, then, with binary Y;, the marginal distribution

of potential outcomes conditional on compliers is point identified:

PY(0) =T > T(0)] = Tl B = P R = O =
P[Y;(1) = y|T;(1) > T;(0)] = Pli=y. TIIE_[Tll:éi i H :E%fzy:’%] 1z = 0],

where y € {0,1}.

Remark 4.1. The two estimands are similar to the Wald estimand in the IA IV model. Consider the marginal
distribution of Y;(1) among compliers, the estimand is equivalent to a Wald estimand with treatment
variable being T;, instrument being Z;, and the outcome variable being the following indicator variable:
1{Y; =y, T; = 1} with y € {0,1}. For the marginal distribution of Y;(0) among compliers, it is the negative
of the Wald estimand with outcome variable defined as the following indicator variable: 1{Y; = y, T; = 0}
withy € {0,1}. m



4.2 Identification of the Joint Distribution of Potential Outcomes for Compliers

Lemma 4.1 only uses the IA IV assumptions. Remarkably, if we further assume the monotone treatment
response, we can point identify the joint distribution of potential outcomes among compliers. In other
words, under Assumption 2.1, we can know the percentage of always-persuaded, never-persuaded, and

persuaded among compliers. The new results are presented in Lemma 4.2.

Lemma 4.2. Suppose Assumption 2.1 holds, the joint distribution of potential outcomes among compliers
is point identified:

PIYi(1) = 1,Y,(0) = 1T(1) > (o)) = T =T R = = B L =0 =
PIYi(1) = 1,Y%(0) =0[Ti(1) > T;(0)] = g 2= = EZ =
PYi(1) = 0,%(0) = 0|T;(1) > Ty(0)] = T =0 Ti]E_[TiIZ - H :g%gio;%]_ 112 = 0]

Remark 4.2. We only need the monotone treatment response assumption to hold among compliers for
Lemma 4.2 because we are “solving” the joint distribution of potential outcomes among compliers from the
marginal distribution of potential outcomes among compliers. However, throughout the text, we maintain
the assumption that monotone treatment response holds almost surely for simplicity. B

4.3 Identification of the Joint Distribution of Potential Outcome with Non-Binary
Outcome and Non-Binary Instrument

Given the identification results in Lemma 4.2, it is natural to ask whether or not we can extend the results
to the case when the outcome or the instrument is non-binary. The answer to the case with the trinary
outcome is negative: we cannot point identify the joint distribution of potential outcomes among compliers
with the monotone treatment response assumption. In contrast, the answer to the case with non-binary
instrument is positive: we can point identify the joint distribution of potential outcomes among compliers
with the monotone treatment response assumption with discrete and continuous instrument.

4.3.1 Case 1: Trinary Outcome

We now discuss whether we can extend the identification of the joint distribution of potential outcomes
in Lemma 4.2 to the case when the outcome is trinary. In the empirical study of persuasion, there are
three possible outcomes: 0 is an outside option, 1 is the target action of persuasion, and —1 is any other
action. Without the monotone treatment response assumption, we can classify individuals into nine types
according to the potential outcomes.* Table 2 presents the classification.

4Jun and Lee (2018) does not use the conventional potential outcome notation in their discussion. Jun and Lee (2018) first writes
out the choice set facing agent i. They use the following notation: S = {0,1, —1}. To write out agent i’s potential outcomes, Jun and
Lee (2018) uses the following notation: Y;(t) = (Yjo(t), Yi1 (¢),Y;—1(t)), where t € {0,1}. Yjo(t) denotes whether the individual choose
to take the action 0 if the treatment is t. Y;; (t) and Y; _; (f) are defined similarly. Moreover, Y jcg Yij(t) = 1 for t € {0,1}. That is, the
choices in S are exclusive and exhaustive. There is a duality between the notation in Jun and Lee (2018) and conventional potential
outcome notation used in Table 2.



Table 2: Types of Individuals with Trinary Outcome

Yi(0) Yi(1)
-1 1
-1 0
-1 1
0** _1**

0 0
0 1
R R
10
1 1

With the trinary outcome, two types of monotone treatment response assumptions were made in the
previous literature. Jun and Lee (2018) assumed that the information treatment has a monotone treatment
effect on the target action of persuasion: we rule out the type of individuals who will take the action of
interest without being exposed to the treatment but will choose the outside action or any other action with
being exposed to the treatment. In other words, with the monotone treatment response assumption made
in Jun and Lee (2018), the seventh and eighth row (those with *) in Table 2 occur with probability zero.

A stronger monotone treatment response assumption was made in Manski (1997). The monotone treat-
ment response assumption in Manski (1997) assumes that Y;(1) > Y;(0) holds with probability one: the
fourth row (those with **), and the seventh and the eighth rows (those with *) happen with zero proba-
bility. Manski (1997) further assumes out the type of individuals who will take the outside action without
being exposed to the treatment but will take any other action with being exposed to the treatment.

Given the monotone treatment response assumption in Jun and Lee (2018), we know that there are seven
unknown probabilities for the joint distribution of potential outcomes among compliers. Moreover, by the
classic results of Imbens and Rubin (1997), we know that the marginal distribution of potential outcomes
among compliers is point identifiable. Among compliers, the joint distribution of potential outcomes is a
function of the marginal distribution of potential outcomes. In other words, we have a system of linear
equations with six known probabilities of the marginal distribution of potential outcomes among com-
pliers and seven unknown probabilities of the joint distribution of potential outcomes among compliers.
Therefore, the marginal distribution of potential outcomes is not point identified given the monotonicity
assumption in the trinary outcome case in Jun and Lee (2018).

A remaining question to ask is whether we can point identify the joint distribution of potential out-
comes with the monotone treatment response assumption made in Manski (1997). Again, the answer is
no. The reason is that even though we have six unknowns and six equations, the information in the data is
repetitive. We formally state the show the impossibility results in the following Proposition.

Proposition 4.1. Assume that the potential outcomes are trinary, i.e., Y;(t) € {—1,0,1} for t € {0,1}.
Furthermore, assume the following monotone treatment response assumption: Y;(1) > Y;(0) holds with
probability one. Moreover, assume assumptions 1 to 4 in Assumption 2.1 hold. Then, the joint distribution

of potential outcomes among compliers is not point identified.

Remark 4.3. We can partially identify the joint distribution of potential outcomes among compliers using
the ideas in Balke and Pearl (1997). For example, to construct sharp bounds for P[Y;(0) = —1,Y;(1) =



—1|T;(1) > T;(0)], we can form a linear program with the objective function being P[Y;(0) = —1,Y;(1) =
—1|T;(1) > T;(0)] and the constraints being the linear system of equations in the proof of Proposition 4.1.
|

Remark 4.4. One way to restore the point identification of the joint distribution of potential outcomes with
non-binary Y; under the monotone treatment response and IA IV assumptions is to binarize the outcome
variable. To see this, assume without loss of generality that Y;(1) > Y;(0) holds almost surely. Define
the following two binary random variables: 1{Y;(1) > x} and 1{Y;(0) > x} with x € R. Then, by the
monotone treatment response, it follows immediately that 1{Y;(1) > x} > 1{Y;(0) > x} holds almost
surely. Thus, the results in Lemma 4.2 hold for the new binarized outcome variable. ®

4.3.2 Case 2: Discrete Instrument
Another direction of extending Lemma 4.2 is to extend the results to the case in which researchers have a

discrete valued instrument. With discrete valued instrument, we can modify Assumption 2.1 to:

Assumption 4.1. (Potential Outcome and Treatment Model with Discrete Valued Instrument)

1. Monotone treatment response: Y;(1) > Y;(0) holds almost surely with Y;(0) and Y;(1) binary,
2. Exclusion restriction: Y;(t,z) = Y;(t), for t,z € supp(T;, Z;),

3. Exogenous instrument: Z; 11 (Y;(0),Y;(1), T;(0), T;(1), X;),

4. First stage: P[T; = 1|Z; = z] # P[T; = 1|Z; = 2], for z # 2’ with z,2' € supp(Z;),

5. IV Monotonicity: either T;(z) > T;(z') or T;(z) < T;(z') holds almost surely for z # 2z’ with z,z’ €
supp(Zi)-

With Assumption 4.1, we can point identify the joint distribution of potential outcomes among each
complier group. The intuition of the result is that with Assumption 4.1, the proof proceeds “as-if” we are

using a binary IV with support being {z,z'}. We now formally state the results in Corollary 4.1.

Corollary 4.1. Suppose Assumption 4.1 holds, conditional on z,z’ compliers, the joint distribution of po-
tential outcome is point identified, that is, for z,z’ € supp(Z;) with T;(z) > T;(Z'):

P(Y; =1,T, =2|Z =2] - P[Y; =1, T, = 2/|Z; = 2]
E[T}|Z; = z] — E[T}|Z; = 2/]

E[Y;|Z; = z] = E[Y|Z; = Z/]

E[Ti|Z; = z] — E[T}|Z; = 2/]

PlY;=0,T, =z|Z;=z| - P[Y; =0,T; = z|Z; = Z/]
E[T;|Z; = z] - E[T}|Z; = 2/]

P[Y;(1) = 1,Yi(0) = 1|Ti(z) > T;(z)] =

=

=

=
I

1, Yl(O) = 0|Ti(Z) > Ti(Z/)] =

=

=

2
I

0,Y;(0) = 0|Ty(z) > Ti(z')] =

Remark 4.5. The results in Corollary 4.1 can also be extended to the case in which the instrument is contin-

uous. Let p(Z;) be the propensity score:
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Furthermore, assume that supp(p(Z;)) = [0,1], then, the joint distribution of potential outcomes at each

margin of selecting into the treatment is identified:

P[¥i(1) = 1Y,(0) = 01Vi = o] = - EY;|p(Z;) = o
Y,(0) = 11V; =] = P[Y, = 1p(Z) =0, T, = 0] - (1 - o) LG =1PZ) =0 T =0)
oP[Y; = 0|p(Z;) =0, T; = 1]

ov !

=

=

=
I

=

=

=
I

Y;(0) =0|V; = 0] =P[Y; =0|p(Z;)) =0, T, =1] + v

where the first equality uses the result in Heckman and Vytlacil (2005), the last two lines use the results in
Carneiro and Lee (2009). m

5 Profiling Persuasion Types Among Compliers

So far we have results that allow researchers to determine the size of the persuasion effect among compliers.
This section provides a set of results on identifying the statistical characteristics of the locally persuadable
(that is, [Y;(0) = 0, T;(1) > T;(0)]) and the three persuasion types among compliers in Table 1. Moreover,
we also extend the results to always-takers and never-takers.

5.1 Identification: Who Are Locally Persuadable

We first consider the characterization of those, among compliers, who do not take the action of interest
without being exposed to the treatment. Formally, we can identify the statistical characteristics of the sub-
population defined by the following event: [Y;(0) = 0,T;(1) > T;(0)]. We do not directly observe the
subpopulation because it involves potential outcomes and treatments. Nevertheless, we can profile this
unobserved subpopulation using the results below.

Theorem 5.1. Suppose that 1 to 4 in Assumption 2.1 hold, then, the distribution of X; conditional on
[Y;(0) =0, T;(1) > T;(0)] is point identified. Let A be a measurable set:

P[X; € AY;(0) =0, Ti(1) > T;(0)]
]P[Xl S A,Yi =0, Ti = 0|Zl = 0] —]P[Xi S A,Yl’ =0, Ti = 0|Zl = 1]
P[Y; = 0,T; = 0|Z; = 0| — P[Y; =0, T; = 0|Z; = 1] '

Furthermore, the conditional distribution function of X; is point identified, for x € IR:

P[X; < x]Y;(0) =0, T;(1) > T;(0)]
P[X; <xY;=0,T;=0]Z; =0 - P[X; <x,Y; =0,T; = 0|Z; = 1]
P[Y,=0,T; =02, = 0] —P[Y; = 0,T; = 0/Z; = 1] '

Finally, let ¢ : R — R be measurable such that E[|g(X;)|] < oo, then, E[¢g(X;)|Y;(0) = 0, T;(1) > T;(0)] is
point identified.

Remark 5.1. The proof of Theorem 5.1 does not use the monotone treatment response assumption in As-
sumption 2.1. The weighting results in Abadie (2003) show that any statistical characteristic that can be
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defined in terms of moments of X; is identified. By focusing on the case when the outcome variable is
binary in the IA IV model, we extend Abadie’s x results to identify the subpopulation who are not only
compliers, but also do not take the action of interest without being exposed to the treatment.

Remark 5.2. We can apply the idea in Theorem 5.1 to the case in which Y; is continuous. Specifically, we can
define a new indicator variable, Y; = 1{Y; € B}, where B is a measurable set. A new potential outcome is
defined is: Y;(0) = 1{Y;(0) € B}. Then, the result in Theorem 5.1 holds for Y; under the IA IV assumptions
we make in Assumption 2.1. A example is B = 1{Y;(0) < 7}. Thus, among compliers and those untreated
outcome being less than 7, researchers can identify the distribution of X;. ®

Remark 5.3. If we further assume that the distributions X;|Y; = 0,T; = 0,Z; = z for z € {0,1} have a

Radon-Nikodym density with respect to a common dominating, positive ¢ — finite measure, the conditional

probability density function is also identified:

f(x|Yi(0) = 0, Ty(1) > Ti(0)]
f(X|Y—T—0Z—O)lP[YZ Ti:0|Zi:O]—f(x\Yi:Ti:O,Z,-zl)lP[Yi:Tizo|Zl-:1]
P[Y; =0,T; = 0Z; = 0] — P[Y; = 0,T; = 0] Z; = 1] ‘

Remark 5.4. The results can also be easily extended to the case with discrete valued instrument under

Assumption 4.1. Suppose T;(z) > T;(z’) holds almost surely, then:

]P[Xl' S A|Yl(0) =0, Ti(Z) > Ti(Z/)]
]P[Xi S A,Yi =0T, = 0|Zl = Z] 7]P[Xl‘ € A,Yl‘ =0T = 0|Z1 = Z/]
a P[Yi:O,Tl‘:OlZi:Z]—]P[Yl'ZO,Ti:mZ,':Z’] g

where A is a measurable set. &

Remark 5.5. Theorem 3.1 in Abadie (2003) shows that any statistical characteristic that can be defined in
terms of moments of the joint distribution of (Y;, T;, X;) is identified for compliers:

1

mﬁ[xg(lﬁ, Ti, Xi)],

Elg(Y;, T;, X;) | T;(1) > T;(0)] =

where x = 1 — & ~ Pzl Thus, a natural question is whether or not we can point identify

}
Elg(Y;, T;, X;) | Yi(0) =0, T;(1) > T;(0)]. The answer is no. To see this:

(1-7) _ (1-T)Z;
[Zi=

E[g(Y;, Ti, Xi)|Yi(0) = 0, T;(1) > T;(0)]

= Elg(Y;(1)Zi +Yi(0)(1 —Z) Zi, Xi)[Yi(0) = 0, Ti(1) > T;(0)]
= Elg(Yi(1)Z;, Z;, X;)|Yi(0) = 0, T;(1) > T;(0)]
= Elg(Yi(1),1,X;)|Z; =1, Y( ) =0,Ti(1) > Ti(0)]P[Z; = 1]Y;(0) = 0, T;(1) > T;(0)]
+E[g(0,0,X;)|Z; =1,Y;(0) =0, T;(1) > T;(0)]IP[Z; = 0]Y;(0) =0, T;(1) > T;(0)]
= Elg(Yi(1),1, X)IY( ) =0,T;(1) > Ty(0)]P[Z; = 1]
+E[g(0,0,X;)|Y;(0) = 0, T;(1) > T;(0)]P[Z; = 0],

where the first equality uses the fact that T; = Z; for compliers, the fourth equality uses the strong IV
independence assumption. Due to the presence of E[g(Y;(1),1,X;)|Y;(0) = 0,T;(1) > T;(0)|P[Z; = 1],
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which is about the joint distribution of potential outcomes, E[g(Y;, T;, X;)|Y;(0) = 0, T;(1) > T;(0)] is not
point identified with the IA IV assumptions. B

Since the marginal distribution of potential outcomes among compliers is identifiable, a natural exten-
sion of Theorem 5.1 is to extend the results to the following subpopulations: [Y;(0) = 1,T;(1) > T;(0)],
[Y;(1) =0, T;(1) > T;(0)], and [Y;(1) = 1, T;(1) > T;(0)]. The results are presented in Proposition 5.1.

Proposition 5.1. Assume that 1 to 4 in Assumption 2.1 hold, then, the following conditional distributions
of X; are point identified. Let A be a measurable set:

P[X; € A]Y;(0) = 1,T;(1) > T;(0)]
. ]P[Xl € A,Yl‘ = 1,T1‘ = 0|Zl = 0] —]P[Xl' € A,YZ‘ = 1/Ti = O|Zl = 1]
P[Y;=1,T,=0[Z =0 —P[Y; = 1, T; = 0]Z; = 1] ’

P[X; € AJYi(1) =0,T;(1) > T;(0)]
N ]P[XZ‘ €AY, =0T = 1|Z,’ = 1] —]P[Xi €AY, =0T = 1|Z,’ = 0]
N P[Y; =0,T; =1|Z; =1 —-P[Y; =0,T; = 1|Z; = 0] ’

P[X; € AlY;(1) =1, T;(1) > T;(0)]
PX; €AY, =1T,=1Z =1 -P[X; € A,Y;=1,T; =1|Z; = 0]
PlY, =1,T; =1|Z; = 1] - P[Y; = 1, T, = 1|1 Z; = 0] '

Remark 5.6. By the identical argument in Theorem 5.1, the conditional distribution functions of X; are
also identifiable, because {(—oo,x] : x € R} is measurable. Furthermore, for measurable g, the ex-
pectations of g(X;) conditional on the three subpopulations are also identifiable assuming that the ex-
pectation is well-defined. An implication thus is any statistical moments of the pre-treatment covari-
ates for the three subpopulations defined by [Y;(0) = 1,T;(1) > T;(0)], [Yi(1) = 0,T;(1) > T;(0)], and
[Y;(1) =1, T;(1) > T;(0)] are identifiable. Finally, if we further assume the existence of the Radon-Nikodym
density for X;|Y; =y, T; = t,Z; = z for all y,t,z € {0,1} with respect to a common dominating, positive

o — finite measure, the conditional probability densities are also identified.

We now use the weighting methods developed in Abadie (2003) to derive the results in Theorem 5.1.
The results in Abadie (2003) reweight the observations, which enables us to “find” the compliers and those
who do not take the action of interest without being exposed to the treatment. We now formally state the

results in Proposition 5.2.

Proposition 5.2. Assume that 1 to 4 in Assumption 2.1 hold, then, the distribution of X; conditional on
[Y;(0) =0, T;(1) > T;(0)] is point identified. Let A be a measurable set:

P[X; € A[Y;(0) =0, Ti(1) > T;(0)]
IP[XZ S A] X (]P[TZ = 1|X1 €A Z = 1] —]P[Ti = 1|X1 €A Z = 0] —E[K0Yi|XZ‘ S A])
P[Y; =0,T; = 0]Z; = 0] — P[Y; = 0,T; = 0/Z; = 1] ’

T;) (1-2;)-P[Z;=0]

where ko = (1= T:) b7 Zgp(z-1 -

We also show that the identification results in Theorem 5.1 and Proposition 5.2 are equivalent. We
formally state this equivalence result in Proposition 5.3.
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Proposition 5.3. The identification results for P[X; € A | Y;(0) = 0,T;(1) > T;(0)] in Theorem 5.1 and
Proposition 5.2 are equivalent.

5.2 Identification: Compliance and Persuasion

An implication of Lemma 4.2 is that we can point identify the statistical properties of always-persuaded,
never-persuaded, and persuaded among compliers. The results follow because the joint distribution of
potential outcomes among compliers is point identified under the monotone treatment response assump-
tion in the binary IA IV model. The usefulness of this result is that it can assist us in understanding how

persuasion works among compliers. The results are summarized in Theorem 5.2.

Theorem 5.2 (Compliance and Persuasion). Suppose Assumption 2.1 holds, then, the distribution of X;
conditional on always-persuadable compliers, never-persuadable compliers, and persuadable compliers
are point identified. Let A be a measurable set:

CPX; €AY, =1T;=0/Z;=0-P[X; €AY, =1T,=0|Z; = 1]
N P[Y; =1,T; =0|Z; =0] = P[Y; =1,T; = 0|Z; = 1] ’
P[X; € AlYi(1) = Y;(0) =0, T;(1) > T;(0)]

-V

B ]P[Xl € A,Yl’ = O,Tl‘ = 1|Zl =1 —]P[Xi € A,Yi = O,Tl‘ = 1|Zl = 0]
P[Y; =0,T; = 1|Z; = 1] — P[Y; = 0, T; = 1|Z; = 0] ’
P[X; € A[Y;(1) = 1,Y:(0) = 0, T;(1) > T;(0)]
. ]P[X,' € A,Yl’ = 1|Zi = 1} —]P[X,’ c A,Yi = 1|Z1' = O]
E[Yi|Z; = 1] - E[Y;[Z; = 0]

Remark 5.7. By the identical argument in Theorem 5.1, the conditional distribution functions of X; given
persuasion types and compliers are also identifiable, because {(—o0, x] : x € R} is measurable. Further-
more, for measurable g, the expectations of g(X;) conditional on the three subpopulations are also identi-
fiable given the expectation is well-defined. An implication thus is any statistical moments of the always-

persuaded, never-persuaded, and persuaded among compliers are identifiable. ®

Remark 5.8. This theorem extends the weighting results in Abadie (2003). The theorem says that we can
learn the statistical characteristics of the persuasion types defined in terms of the joint distribution of po-

tential outcomes given Assumption 2.1. B

Remark 5.9. A different quantity of interest is the following: conditional on compliers and the pretreatment
covariates, the probability of being different persuasion types (i.e., always-persuaded, persuaded, never-
persuaded). Given the strong IV independence assumption, such quantity is point identifiable because the
strong IV independence assumption implies that the joint distribution of potential outcomes and treatments
is independent of the instrument conditioning on the covariates. In other words, we have:

]P[Yi =1,T = 0|Zi = O,Xi] —]P[Yi =1,T = 0|Zi = 11Xz‘]
E[T;|Z; = 1,X;] - E[T;|Z; = 0, Xj] ’
,Xi| —E[Y;|Z; =0, X;]
, Xi| = E[Ti|Z; = 0,X;]’

P[Y;(1) = 0,Y:(0) = 0|T;(1) > T;(0), X;] =




PlY; =0T, =1Z;=1,X;] - PY; =0,T; =1|Z; =0, X;
PIY(1) = 1,%,(0) = 1[T,(1) > T,(0), X} = 2 }E[T.Iz’.—lxﬁ_ﬁﬁz.—éxf’ .
1 1 4 1 1 [ 1

Remark 5.10. The results in Theorem 5.2 hold with discrete Z; under Assumption 4.1. Again, the results
hold because of Corollary 4.1. With discrete Z;, the results in Theorem 5.2 become:

P[X; € AlYi(1) = Y;(0) = 1, Ti(z) > T;(2)
CPX €AY, =1,T;=01Z=2]-P[X; € A,Y; =1,T; =0/Z; = 2]
P, =1,T, =0|Z; = 2] —P[Y; =1,T; = 0|Z; = 2] /

P[X; € AlYi(1) = Y;(0) =0, T;(z) > T;(2)]

P[X; €AY, =0,Tj=1Z =2 -P[X; € A,Y; =0,T; = 1|Z; = /]
P[Y,=0,T;=1|Z; =z - P[Y; = 0,T; = 1|Z; = 2 ’

P[X; € A[Y;(1) = 1,Y;(0) = 0, T;(z) > T;(2')]

P €AY, =1Z =2 -P[X; € A,Y; =1|Z; = 2]

a E[Y;|Z; = z] - E[Y;|Z; = /] '

-P
-P

where {z,z'} € supp(Z;) and A is a measurable set. B

5.3 Identification: Always-Takers and Never-Takers

For always-takers, we observe their Y;(1). For never-takers, we observe their Y;(0). Therefore, the weight-
ing method developed in Theorem 5.1 can be extended to always-takers and never-takers. The results are

presented in Proposition 5.4.

Proposition 5.4. Assume that Assume that 1 to 4 in Assumption 2.1 hold, furthermore, assume that we ob-
serve pre-treatment covariates X;, and let ¢(+) be any measurable real function of X; such that E[|¢(X;)|] <

oo, then, for y € {0,1}, we have the following:

=EgX)lYi=yT; =12 =0
E[¢(Xi)[Yi(0) =y, T;(1) = Ti(0) = 0] = E[g(X;)|Yi =y, T; = 0, Z; = 1].

Remark 5.11. Proposition 5.4 implies that the conditional distributions are identifiable. This follows be-
cause g(x) = 1{x € A}, with A being a measurable set, is a bounded measurable map. Furthermore,
the conditional distribution function is also identifiable. This observation, again, follows from the fact that
{(—o00,x] : x € R} is measurable. ®

Remark 5.12. For always-takers, if we further assume the monotone treatment response, we can identify the
statistical characteristics measured by pre-treatment covariates of the never-persuaded and always-takers.
For never-takers, if we further assume the monotone treatment response, we can identify the statistical

characteristics measured by pre-treatment covariates of the always-persuaded and never-takers. B
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6 Estimation and Inference

So far we have developed a set of identification results that allow researchers to determine the proportion of
persuasion types among compliers and to profile them with pre-treatment covariates. This section provides
estimation and inference results. We provide results on the estimation and inference for identifying the
statistical characteristics measured by pre-treatment covariates for the locally persuadable in Theorem 5.1.
The results in this section apply directly to other identification results, since they share similar flavor with

the results in Theorem 5.1.

6.1 Estimation

Recall that in Theorem 5.1, we identify the following probability for the locally persuadable:

PX; € AJYi(0) =0, Ti(1) > T;(0)]
]P[Xl €AY, =0T = 0|Zl = 0] —]P[Xi €AY, =0T = 0|Zl = 1]
P[Y;=0,T, = 0Z; = 0| —P[Y; =0, T; = 0/Z; = 1] '

with A being a measurable set. Note this estimand can be equivalently represented as the ratios of two

regression coefficient:

P[X; € A[Y:(0) = 0, Ty(1) > T;(0)] = l’j; 1)

where B is the regression coefficient of Z; when regressing 1{X; € A,Y; = 0,T; = 0} on Z;, B, is the
coefficient of Z; when regressing 1{Y; = 0, T; = 0} on Z,.

A natural estimator for P[X; € A|Y;(0) =0, T;(1) > T;(0)] is to use its sample analog:

™

L, 2)
2

P[X; € A|Y;(0) =0, Ti(1) > T;(0)] =

e

where 31 and f, are estimated regression coefficient on Z; from regressing 1{X; € A,Y; = 0,T; = 0} and
1{Y; = 0, T; = 0} on Z;, respectively. It is easy to see that P[X; € A|Y;(0) = 0, T;(1) > T;(0)] is a consistent
estimator for P[X; € A|Y;(0) = 0, T;(1) > T;(0)] under standard assumptions. We now formally state the

result in Proposition 6.1.

Proposition 6.1. Assume that 1 to 4 in Assumption 2.1 hold. Moreover, assume that P[Y; = 0, T; = 0|Z; =
0] -P[Y; = 0,T; = 0|Z; = 1] # 0and IP[Z; = 1] > 0. Finally, assume that {Y;, T}, Z;, X;}! , is an is an

independent and identically distributed sample. Then, we have:
5 P
PX; € AY;(0) = 0, Ti(1) > Ti(0)] = P[X; € A|Y;(0) = 0, Ti(1) > T;(0)],

where P[X; € A|Y;(0) = 0, T;(1) > T;(0)] is defined in Equation 2.

Remark 6.1. Proposition 6.1 is useful when X; has discrete support with {x1, ..., x;}. Then, Proposition 6.1
implies that for x € {x,...,x}, P[X; = x]Y;(0) = 0, T;(1) > T;(0)] is a consistent estimator for IP[X; =
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xi|Y;i(0) = 0, T;(1

) > T;(0)]. Then, by the Weak Law of Large Numbers and continuous mapping theorem,
E[g(X;)|Y;(0) =0, T;(1) > T;(0)] can be consistently estimated by its sample analog:

k
E[g(X:)|Y;(0) = 0, T;(1) > T;(0)] = Z%g(xj)]f’[xi = xj[Yi(0) = 0, T;(1) > T;(0)].
=

|
Remark 6.2. Theorem 5.1 shows that we can point identify the conditional distribution function:
PIX; < x[Y;(0) = 0, Ti(1) > T;(0)]

P[X; <x,Y;=0,T;=0[Z; =0 -P[X; <x,Y; =0,T; =0|Z; = 1]
P[Y; =0,T; = 0|Z; = 0] - P|Y; = 0,T; = 0/Z; = 1] '

Thus, by Proposition 6.1, P[X; < x|Y;(0) = 0,T;(1) > T;(0)] is a (pointwise) consistent estimator for
P[X; < x|Y;(0) =0, T;(1) > T;(0)]. By the same idea in the Glivenko-Cantelli Theorem (see, e.g., Theorem
2.4.7 in Durrett (2010)), we can strengthen the pointwise consistency to uniform consistency:

sup |P[X; < x|Y;(0) = 0, T(1) > T3(0)] — P[X; < x[Y;(0) =0, T;(1) > T;(0)]| > 0.

xeR

We prove the results in Appendix C.14. &

6.2 Bootstrap Validity Under Strong Identification

After having a consistent estimator for P[X; € A|Y;(0) = 0,T;(1) > T;(0)], we now provide a result on
its limiting distribution. Specifically, we provide a justification that the standard bootstrap is valid for
P[X; € AlY;(0) =0, T;(1) > T;(0)] when the instrument is not weak.

The standard bootstrap estimates the limiting distribution of /n(IP[X; € A|Y;(0) = 0, T;(1) > T;(0)] —
P[X; € A|Y;(0) =0, T;(1) > T;(0)]) by the conditional law of

Vn(P*[X; € AlY;(0) =0, T;(1) > T;(0)] — P[X; € A|Y;(0) =0, T;(1) > T;(0)]) ®)

given the data. Here, P*[X; € A|Y;(0) = 0,T;(1) > T;(0)] refers to the estimates of P[X; € A|Y;(0) =
0, T;(1) > T;(0)] using the bootstrapped sample (Bickel and Freedman, 1981; Vaart and Wellner, 1996).

When we use standard bootstrap, we want the conditional law of 3 provides a “good” approximation to
the limiting distribution of v/n(IP[X; € A|Y;(0) = 0, T;(1) > T;(0)] — P[X; € A|Y;(0) = 0, T;(1) > T;(0)]),
so that we can construct an asymptotically valid confidence interval. Formally speaking, a “good” approx-
imation requires that the conditional law of 3 consistently estimates the limiting distribution of /n(IP[X; €
AlY;(0) =0, T;(1) > T;(0)] = P[X; € A[Y;(0) = 0, Ty(1) > T;(0)]).

The estimator in Equation 2 is a ratio of two regression coefficient. Thus, the problem of characterizing
the limiting distribution of the estimator in Equation 2 shares similar flavor with the problem of character-
izing the limiting distribution of a Two Stage Least Square (TSLS) estimator. Thus, to make the asymptotic
approximation work, we need the denominator 8, in Equation 1 to be bounded a way from zero. The intu-

17



ition of the bootstrap validity is that when the instrument is not weak, P[X; € A|Y;(0) = 0, T;(1) > T;(0)]
is differentiable at (1, B2). (Fang and Santos, 2019). We now formally state the result in Proposition 6.2

Proposition 6.2. Assume that 1 to 4 in Assumption 2.1 hold. Moreover, assume that P[Y; =0, T; = 0|Z; =
0] —-P[Y; = 0,T; = 0|Z; = 1] # 0and P[Z; = 1] > 0. Finally, assume that {Y;, T}, Z;, X;}! , is an is an
independent and identically distributed sample. Then, we have:

Vn(P*[X; € AlY;(0) =0, T;(1) > T;(0)] — P[X; € A|Y;(0) =0, T;(1) > T;(0)])

= Vn(P[X; € A|Y;(0) = 0, T;(1) > T;(0)] - P[X; € A|Y;(0) =0, T;(1) > T;(0)]) +0p(1).
Remark 6.3. Proposition 6.2 is useful when X; has a discrete support with {x1, ..., x }. In this case, the boot-
strap is also valid. Specifically, by applying Theorem 3.1 in Fang and Santos (2019), the limiting distribution
of vn(E[g(X;)]Y;(0) = 0, T;(1) > T;(0)] — E[g(X;) € A|Y;(0) = 0,T;(1) > T;(0)]) can be consistently es-

timated by the conditional law of /n(E*[g(X;)|Y;(0) = 0,T;(1) > T;(0)] — E[g(X)|Y;(0) = 0,T;(1) >
Ti(0)]). m

6.3 An Anderson-Rubin Test Under Weak Identification

The result in Proposition 6.2 is valid when P[Y; = 0, T; = 0/Z; = 0] — P[Y; = 0, T; = 0|Z; = 1] is bounded
away from 0. However, in practice, the identification of P[X; € A|Y;(0) = 0, T;(1) > T;(0)] might be weak
because P[Y; = 0,T; = 0|Z; = 0] = P[Y; = 0,T; = 0|Z; = 1] might be arbitrarily close to zero. The weak
identification problem causes a poor asymptotic approximation in the finite-sample settings. This section
proposes an inferential procedure that is robust to weak identification problem.

Let us denote P[X; € A|Y;(0) =0, T;(1) > T;(0)] by p. Recall from previous section that p is a function
of (1, B2):

P—glﬁpﬁz—ﬁr

Thus, under the null hypothesis Hy : p = po, we know that ppB2 — 1 = 0. Therefore, under Hy, the limiting
distribution of \/n(pof1 — B2) can be derived using the delta method:

A A

\/ﬁ(PO,B1 - 162) g N(Or ')’)/

where v = Var(B1) — 2po Cov(B1, B2)) + p§ Var(B2).

Therefore, a test statistic is:

where 7 is a consistent estimator for <. By Slutsky’s Lemma, we further know that:

D
Tw = x(1).
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Using the AR statistic, we can form an AR test of Hy : p = pg as:

Par(po) =Ty > X311 4}

where X%,lf . 18 the T — & quantile of X% distribution. As noted by Staiger and Stock (1997), this yields a
size-u test that is robust to weak identification. We then can form a level 1 — & weak-identification-robust

confidence set by collecting the nonrejected values.

7 Discussion

In this section, I offer three points of discussion on the identification results in previous sections. First, I
compare 0,41 With classic estimands. Specifically, I first compare the local persuasion rate and the complier
causal attribution rate. I then provide the necessary and sufficient conditions under which approximated
fpk equals B}, under one-sided non-compliance, which complements the analysis in Jun and Lee (2018).
I also propose a test of the identification assumptions, namely the IA IV and monotone treatment response
assumptions. I then provide a simple method that can help researchers assess the sensitivity of the results

to the monotone treatment response assumption.

7.1 Comparison with Existing Estimands
7.1.1 Complier Causal Attribution Rate

The most closely related target parameter to the local persuasion rate is the causal attribution rate, which
measures the proportion of observed outcome prevented by the hypothetical absence of the treatment
(Pearl, 1999). With the presence of a binary instrument, Yamamoto (2012) defines the complier causal attri-
bution rate denoted by pc:

pc = ]P[Yi(()) = O|Yi(1) =1,T, = 1rTi(1) > T,‘(O)],
which measures the proportion of observed outcome prevented by the hypothetical absence of treatment

among compliers.

One main difference between pc and 04, is that pc conditions on [Y;(1) = 1,T; = 1, T; > T;(0)] but
B1ocal conditions on [Y;(0) = 0, T; > T;(0)]. Therefore, a natural way to extend the local persuasion rate is to

define the local persuasion rate on the untreated:
Olocal untreated = P[Yi(1) = 1]Y;(0) =0, T; = 0, T;(1) > T;(0)].

In other words, compared with the local persuasion rate, we further condition on those whose treatment
switches off. We can point identify 0)ocal untreated given Assumption 2.1. The intuition of the identifica-
tion of Ojgcal untreated i that conditioning on compliers implies that T; = Z;, and Z; is exogenous, thus,

BOlocal untreated = Blocal- We formally state the result in Claim 7.1.
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Claim 7.1. Assume that Assumption 2.1 holds, then, 6oca] untreated 1S point identifiable:

0 B 113[1/1-:1|Zi:1]—]l’[Yi:1|Zi:O]
local untreated — IP[YZ‘ =0,T, = 0|Zi — 0] _ ]P[Yi =0T = 0|Zi — 1} .

7.1.2 Equivalence between the Approximated Persuasion Rate and the Local Persuasion Rate with One-
Sided Non-Compliance

As summarized in DellaVigna and Gentzkow (2010), one popular estimand in the empirics of persuasion is

the “approximated” persuasion rate fp:

6o _PYi=1Z=1-P[Y;=1|Z;=0] 1
PR PIT =1z, =1 -P[T, =12, =0 " 1-P[Y; =1|Z; =0]

As noted in Jun and Lee (2018), 8pk is not a well-defined conditional probability. Therefore, fpk does not
measure persuasion rate for any subpopulation.

In this subsection, we provide conditions under which fpg equals to 6;,., when there is one side non-
compliance in the experiment. These conditions have empirical relevance. Because in some experiments
on persuasion with encouragement design, there is one-sided non-compliance. For example, there is a
non-compliance problem in the treatment group in the GOTV experiment in Green et al. (2003).

The results below state that fpy equals to 8}, if and only if the distribution of potential outcomes and
potential treatments satisfy certain conditions. Specifically, when there is one-sided non-compliance in the
treatment group, fpk equals to Oy, if and only if the potential outcome under untreated is independent
of the potential treatment when the instrument switches off. Suppose there is one-sided non-compliance in
the control group. In that case, the two estimands are equal if and only if the proportion of those who do
not vote without being exposed to the treatment among those who comply equals the proportion of those
who do not vote were they exposed to the treatment among the never-takers.

The results below contrast sharply with the results in Jun and Lee (2018), which state that these two
quantities are equivalent to each other if: 1) T; = Z; holds almost surely, that is, we are in the sharp
persuasion design; 2) T; LL (Y;(0),Y;(1)); 3) Y;(1) = Y;(0) =1 for all i, or Y;(1) = Y;(0) = O for all i.

Theorem 7.1. Assume that Assumption 2.1 holds, if there is one-sided non-compliance in the control group,
then Opg = O)ocq if and only if IP[Y;(0) = 0|T;(0) = 0] = P[Y;(1) = 0|T;(0) = 1], if there is one-sided non-
compliance in the treatment group, then Opx = 6}, if and only if Y;(0) LL T;(1).

7.2 A Sharp Test of the Identification Assumptions

Our main identification result in Theorem 5.2 depends on two sets of assumptions, namely the IA IV as-
sumptions and the monotone treatment response assumption. Both assumptions impose restrictions on
individuals’ choice behaviors. The IV monotonicity assumption assumes that the instrument uniformly
shifts individuals’ treatment-taking decisions in one direction. The monotone treatment response assump-
tion assumes that the treatment uniformly shifts individuals” outcome decisions in one direction. Both as-
sumptions are subject to the criticism that they impose strong restrictions on choice behaviors. To address
such criticism, we develop a sharp test for Assumption 2.1.
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The idea of the test proposed here closely relates to Balke and Pearl (1997) and Machado et al. (2019).
The binary IA IV model with monotone treatment response assumption implies that the observed quantity,
say P[Y; =0,T; = 0,Z; = 0, X; € A], with A measurable, is a linear combination of the probability of the
unobserved outcome and compliance types, where the types are defined in Table 1. In other words, the

identification assumptions imply the following linear system of equations:
Aobsp = b, 4)

where Agps is a matrix that reflects the restrictions on the data, p is a vector of the unobserved persuasion
and compliance types defined in Table 1, b is a collection of observed quantities, for example P[Y; = 0, T; =
0,X; € A | Z; = 0].° Thus, the observed quantity b is consistent with Assumption 2.1 if there exists a
solution to the system of linear equations in 4. We now summarize this observation to Proposition 7.1.

Proposition 7.1. If Assumption 2.1 holds, then, there exists p > 0 such that A,,sp = b for all measurable
set A.

An implication of Proposition 7.1 is that to test the validity of Assumption 2.1, for observed data
{Y;, T;, Z;, X;}, that is an independently and identically distributed sample drawn from P € P, it suf-
fices to test the null hypothesis:

Hy:P e Pyversus Hy : P € P\ Py (5)

where Py := {P € P : 3p > 0s.t. Ajpsp = b}, which is the set of distributions that is consistent with
Assumption 2.1. Thus, if Hy is rejected, we have strong evidence against the validity of Assumption 2.1.
However, if Hy is not rejected, we cannot confirm the validity of Assumption 2.1. In this precise sense,
Assumption 2.1 is a refutable but nonverifiable hypothesis (Kitagawa, 2015).

In terms for the implementation of testing 5, with discrete X;, we can set A to be the support of X;, and
proceed the test using the recent advancement on testing whether there exists a nonnegative solution to a
possibly under-determined system of linear equations with known coefficients (Fang et al., 2020; Bai et al.,
2022). One computationally intensive, yet feasible method for testing Hy proposed in Bai et al. (2022) is
to use subsampling method. With the subsampling method, by using the classic results in Romano and
Shaikh (2012), Bai et al. (2022) shows that the test controls size uniformly over P. The test statistic in Bai
et al. (2022) is given by:

7

T,:= _inf | Aobsp — b
n pz(}%pzl\/ﬁ obsP

where b is an estimator of b.® For the subsampling-based test, Bai et al. (2022) defines the following quan-
tity:
1 . .
Ly (¥) =N Z ]1{ inf \/ﬁ’Aobsp—bJ-‘ St},
n 1§

1=N, p>0:Bp=1

5We provide the definition of Ayps, p, and b in Appendix A.

6We choose ¢, norm when computing the test statistic. One advantage of using ¢, norm is that it formulates a convex optimization
problem that can be efficiently solved by standard statistical software, say, R (Boyd and Vandenberghe, 2004; Fu et al., 2017). For more
discussions on computing the test statistic, see Appendix B.
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where N, = (}), j indexes the jth subsample of size b, Bj is b evaluated at jth subset of the data. The
subsampling-based test in Bai et al. (2022) is:

TS = 1{T, > L,;'(1—a)}.

7.3 Sensitivity Analysis: the Monotone Treatment Response Assumption

Besides testing the identification assumptions jointly in the previous subsection, we now develop a sensitiv-
ity analysis approach to help researchers assess to what extent the point identification results are sensitive
to the monotone treatment response assumption. Note that we apply the sensitivity analysis to the identi-
fication results in Lemma 4.2.

The sensitivity analysis builds on the idea in Balke and Pearl (1997). Note that the marginal distribu-
tion of potential outcomes is the marginal distribution of the potential outcomes among compliers can be
represented as the following linear systems of equations:

11 0 0] [P[%(0)=0,(1) =0T,(1) > T,(0)]]  [P[¥i(0) = 0|T;(1) > T;(0)]
0 0 1 1| |P[Yi(0)=0,%(1)=1|T;(1) > T;(0)]| _ |P[Y;(0) =1|T;(1) > T;(0)]
10 1 0| [PY(0)=1Y(1) =0T,(1) > T(0)]|  [P¥i(1) = 0]T;(1) > T;(0)]
01 0 1] [P%(0)=1%1) =1T,(1) > )]  |[P¥:(1) = 1|T;(1) > T,(0)).

Therefore, we can vary the size of P[Y;(0) = 1,Y;(1) = 0|T;(1) > T;(0)] to see how the point identifica-
tion results for the joint distribution of potential outcomes change. Here, with known P[Y;(0) = 1,Y;(1) =
0|T;(1) > T;(0)], we can point identify P[Y;(0) = 0,Y;(1) = 0|T;(1) > T;(0)], P[Y;(0) = 0, Y;(1) = 1|T;(1) >
T;(0)], and P[Y;(0) = 1,Y;(1) = 1|T;(1) > T;(0)] from the system of equations above.

8 Empirical Application: Revisit Green et al. (2003)

8.1 Empirical Setup

Green et al. (2003) conducted randomized voter mobilization experiments before the November 6, 2001
election in the following six cities: Bridgeport, Columbus, Detroit, Minneapolis, Raleigh, and St. Paul.
The instrument Z; is a randomly assigned face-to-face contact from a coalition of nonpartisan student and
community organizations, encouraging voters to vote. The treatment T; is whether or not voters indeed
received face-to-face contact. The outcome variable Y; is voter turnout in various elections in 2001. There are
two pre-treatment covariates that we are interested in. For the full sample, we are interested in whether or
not voters voted in the 2000 presidential election. We also restrict the analysis to Bridgeport. For Bridgeport,
we are interested in whether or not voters are Democrats. A summary statistics table is provided in Table 3.
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Table 3: Summary Statistics in Green et al. (2003)

Observations Mean Std. Dev. Min Max
Panel A: Full Sample

Y; 18,933 0.296 0.457 0 1
T; 18,933 0.136 0.342 0 1
Z; 18,933 0.461 0.498 0 1
Voted in 2000 18,933 0.608 0.488 0 1
Panel B: Bridgeport

Y; 1,806 0.118 0.323 0 1
T; 1,806 0.137 0.344 0 1
Z; 1,806 0.496 0.5 0 1
Democrat 1,806 0.539 0.499 0 1

Note: This table provides summary statistics for Green et al.
(2003). Std. Dev. stands for standard deviation.

8.2 Empirical Results

We first present the results for the marginal and joint distribution of potential outcomes of compliers in
Table 4. Our results reveal two interesting patterns. First, conditional on compliers, most of them are
never-persuaded (that is, never-voters in this specific application) in both full and Bridgeport samples.
Second, only 7.9% of voters are persuaded (that is, mobilizable in this specific application) conditional
on compliers in the full sample, and 13.9% of voters are persuaded (that is, mobilizable in this specific

application) conditional on compliers in Bridgeport.

Table 4: Distribution of Potential Outcomes in Green et al. (2003)

Estimates 95% Bootstrap CI

Panel A: Full Sample

P[Y;(0) = 1|T;(1) > T;(0)] 0.302 (0.264, 0.348)
P[Y;(1) = 1|T;(1) > T;(0)] 0.381 (0.363, 0.399)
P[Y;(0) =1,Y;(1) = 1|T;(1) > T;(0)] 0.302 (0.264, 0.348)
P[Y;(0) =0,Y;(1) =0|T;(1) > T;(0)] 0.619 (0.6, 0.636)
P[Y;(0) =0,Y;(1) = 1|T;(1) > T;(0)] 0.079 (0.039, 0.119)
Panel B: Bridgeport

P[Y;(0) = 1|T;(1) > T;(0)] 0.111 (0.029, 0.199)
P[Y;(1) = 1|T;(1) > T;(0)] 0.25 (0.203, 0.305)
P[Y;(0) =1,Y;(1) = 1|T;(1) > T;(0)] 0.111 (0.029, 0.199)
P[Y;(0) =0,Y;(1) = 0|T;(1) > T;(0)] 0.75 (0.7,0.8)
P[Y;(0) =0,Y;(1) = 1|T;(1) > T;(0)] 0.139 (0.048, 0.21)

Note: This table provides estimated marginal and joint distributions of
potential outcomes among compliers for Green et al. (2003). CI stands
for confidence interval.

We now apply Theorem 5.1 and Theorem 5.2 to this experiment. We construct the 95% confidence
interval by using both the bootstrap and Anderson-Rubin test. The results are presented in Table 5.

For the full sample, the probability of voting in the 2000 presidential election conditional on the locally
persuadable (that is, those who do not vote without the information treatment and compliers) is 60.3%. A
more interesting finding is that the subpopulation of always-persuaded compliers has the highest probabil-
ity (thatis, 95.4%) of voting in the 2000 presidential election. The results show that if always-persuaded and
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compliers vote in the low-profile local elections regardless of the GOTV intervention, they will very likely
vote in the high-profile 2000 presidential elections. This empirical pattern is consistent with the robust find-
ings on the persistent of voting behavior (Gerber et al., 2003). One potential explanation of the persistent
of the voting behavior is that voting behavior is habit-forming (Gerber et al., 2003). As expected, the sub-
population of never-persuaders and compliers has the lowest probability of voting in the 2000 presidential

election.

Another interesting finding is that the voting propensity in the 2000 presidential election of the per-
suaded and compliers is very close to the always-persuaded and compliers. It is consistent with the findings
that GOTV experiments mobilize the high-propensity voters (Enos et al., 2014). One potential explanation
is that the GOTV programs only mobilize the voters who are on the margin of not voting. The persuaded
voters should have a voting propensity that is close to the always-persuaded voters.

For the Bridgeport sample, the most interesting result is that among compliers and persuadable, the
chance of them being a democrat is very high. However, its confidence interval is pretty wide. Mobilizing
more Democrats in the school board election in Bridgeport has practical implications for two reasons. First,
Democrats are more pro-union. Second, the turnout rate in school board elections is usually low.” The
mobilized voters might vote for pro-union candidates and help select candidates who were more likely to
increase teachers’ salaries and benefits and improve their working conditions (Anzia, 2011).

Table 5: Profiling Persuasion Types in Green et al. (2003)

Estimates 95% Bootstrap CI ~ 95% AR CI

Panel A: Full Sample

IP[Voted in 2000 = 1[Y;(0) = 0, T;(1) > T;(0)] 0.603 (0.552, 0.643) (0.561, 0.644)
IP[Voted in 2000 = 1]Y;(0) = 1,Y;(1) =1, T;(1) > T;(0)] 0.954 (0.92,0.99) (0.927,0.979)
IP[Voted in 2000 = 1]Y;(0) =0, Y;(1) =0, T;(1) > T;(0)] 0.511 (0.481, 0.532) (0.489, 0.532)
IP[Voted in 2000 = 1|Y;(0) = 0,Y;(1) =1, T;(1) > T;(0)] 0.885 (0.688, 1) (0.692,0.971)
Panel B: Bridgeport

P[Democrat = 1|Y;(0) =0, T;(1) > T;(0)] 0.515 (0.34, 0.675) (0.364, 0.659)
P[Democrat = 1|Y;(0) = 1,Y;(1) = 1, T;(1) > T;(0)] 0.507 (0,0.913) (0, 0.752)
IP[Democrat = 1|Y;(0) =0, Y;(1) =0, T;(1) > T;(0)] 0.538 (0.461, 0.61) (0.474, 0.593)
IP[Democrat = 1|Y;(0) =0, Y;(1) =1, T;(1) > T;(0)] 0.813 (0.219, 1) (0.364, 1)

Note: This table provides the results on profiling different persuasion types by using pre-treatment covari-
ates. Cl refers to confidence interval. AR refers to Anderson-Rubin.

8.3 Testing Identification Assumptions and Sensitivity Analysis

We implement the test of the Assumption 2.1 by using Proposition 7.1. We use the subsampling method
in Bai et al. (2022) to conduct the test. For the full sample and the Bridgeport sample, the identification
assumptions are not rejected at the 5% level. Furthermore, I provide the sensitivity analysis result on the
joint distribution of potential outcomes in Table 6 by varying the degree to which the monotone treatment
response assumption is violated among compilers. Interestingly, when the violation becomes larger, the
proportion of persuadable among compliers increases.

7According to Green et al. (2003), the turnout rate in Bridgeport school board election in the control arm is 9.9%
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Table 6: Sensitivity for Distribution of Potential Outcomes in Green et al. (2003)

Panel A: Full Sample

Sensitivity Parameter

P[Y;(1) =0,Y;(0) = 1|T;(1) > T;(0)] 01 012 014 016 018 02

Identified Parameters

P[Y;(1) =1,Y;(0) =1|T;(1) > T;(0)] 0.202 0.182 0.162 0.142 0.122 0.102
P[Y;(1) =0,Y;(0) =0|T;(1) > T;(0)] 0.519 0.499 0.479 0459 0439 0419
P[Y;(1) =1,Y;(0) = 0|T;(1) > T;(0)] 0.179 0.199 0.219 0.239 0.259 0.279
Panel B: Bridgeport

Sensitivity Parameter

P[Y;(1) =0,Y;(0) =1|T;(1) > T;(0)] 0.05 0.06 0.07 008 0.09 0.1

Identified Parameters

P[Y;(1) =1,Y;(0) = 1|T;(1) > T;(0)] 0.061 0.051 0.041 0.031 0.021 0.011
P[Y;(1) =0,Y;(0) =0|T;(1) > T;(0)] 07 069 068 067 0.66 0.65
P[Y;(1) =1,Y;(0) = 0|T;(1) > T;(0)] 0.189 0.199 0.209 0.219 0229 0.239

Note: This table provides sensitivity analysis on the joint distribution of potential out-
comes among compliers by varying the size of the dissuaded among compliers.

9 Conclusion

In the empirical study of persuasion, researchers often use a binary instrument to encourage individuals
to consume information. The outcome of interest is also binary. Under the IA IV assumptions and the
monotone treatment response assumption, I first show that it is possible to identify the joint distributions
of potential outcomes among compliers. In other words, we can identify the percentage of the always-
persuaded (that is, individuals who take the action of interest with and without the information treatment),
the percentage of the never-persuaded (that is, individuals who do not take the action of interest with
and without the information treatment), and the the persuadable (that is, those who are mobilized by the
treatment into taking the action of interest). These new quantities can thus provide richer information on
the distribution of the treatment effects of the information treatment.

Furthermore, I develop a weighting method that helps researchers identify the statistical characteristics
measured by the pre-treatment covariates of persuasion types: compliers and always-persuaded, compliers
and persuaded, and compliers and never-persuaded. These findings extend the “x weighting” results in
Abadie (2003), which can profile the characteristics of compliers measured by pre-treatment covariates.
This method can provide richer information on the treatment effect. For instance, some GOTV experiments
aim at mobilizing underrepresented minorities. With my methodology, researchers can estimate the chance
of the compliers and mobilizable voters being underrepresented minorities. Thus, researchers can assess

whether or not their interventions achieve their normative goals.

To address the criticism on the monotone treatment response assumption, I provide two sets of solu-
tions. First, I provide a sharp test on the two sets of identification assumptions (that is, the IA IV assump-
tions and the monotone treatment response assumption). The test boils down to testing whether there
exists a nonnegative solution to a possibly under-determined system of linear equations with known coef-
ficients. I also develop a simple sensitivity analysis to assess the sensitivity of the results with respect to the
monotone treatment response assumption.

An application based on Green et al. (2003) is provided. The result shows that among compliers, roughly
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11% voters are persuadable. Moreover, we find that among compliers, the chance for always-persuaded
voters to vote in the 2000 presidential election is the highest, and the chance for never-persuaded voters
to vote in the 2000 presidential election is the lowest. These results are consistent with the interpretation
that voters’ voting behaviors are habit-forming, hence are highly persistent (Gerber et al., 2003). Moreover,
our results show that the voting propensity of those persuaded is close to those always-persuaded, which
is consistent with the finding that GOTV programs mobilize high-propensity voters (Enos et al., 2014).
Furthermore, in Bridgeport, the results show that the chance of being a Democrat among the persuaded

voters and compliers in Bridgeport is high, though the estimate is quite noisy.

As pointed out in the paper, the results for the binary instrument can be easily generalized to discrete-
valued instrument by considering two instrument levels: {z,z'}. However, the composition of compli-
ers changes with any components in {z,z’} changes. This creates an aggregation problem. Furthermore,
with discrete-valued instrument, researchers can apply the partial identification approach in Mogstad et al.
(2018) to partially identify the persuasion rate, which can help researchers assess the welfare impact of the
information treatment. These constitute interesting topics for future research.

References

ABADIE, A. (2002): “Bootstrap tests for distributional treatment effects in instrumental variable models,”
Journal of the American statistical Association, 97, 284-292.

(2003): “Semiparametric instrumental variable estimation of treatment response models,” Journal of
Econometrics, 113, 231-263.

ABADIE, A., J. ANGRIST, AND G. IMBENS (2002): “Instrumental variables estimates of the effect of subsi-
dized training on the quantiles of trainee earnings,” Econometrica, 70, 91-117.

ANZIA, S. F. (2011): “Election timing and the electoral influence of interest groups,” The Journal of Politics,
73,412-427.

BAL Y., A. SANTOS, AND A. M. SHAIKH (2022): “On Testing Systems of Linear Inequalities with Known
Coefficients,” Working Paper.

BALKE, A. AND ]. PEARL (1997): “Bounds on treatment effects from studies with imperfect compliance,”
Journal of the American Statistical Association, 92, 1171-1176.

BICKEL, P. J. AND D. A. FREEDMAN (1981): “Some asymptotic theory for the bootstrap,” The annals of
statistics, 9, 1196-1217.

BLATTMAN, C. AND J. ANNAN (2016): “Can employment reduce lawlessness and rebellion? A field exper-

iment with high-risk men in a fragile state,” American Political Science Review, 110, 1-17.

BLATTMAN, C., N. FIALA, AND S. MARTINEZ (2020): “The long-term impacts of grants on poverty: Nine-

year evidence from Uganda’s youth opportunities program,” American Economic Review: Insights, 2, 287
304.

BLATTMAN, C., J. C. JAMISON, AND M. SHERIDAN (2017): “Reducing crime and violence: Experimental
evidence from cognitive behavioral therapy in Liberia,” American Economic Review, 107, 1165-1206.

26



BOYD, S. AND L. VANDENBERGHE (2004): Convex optimization, Cambridge university press.

CARNEIRO, P. AND S. LEE (2009): “Estimating distributions of potential outcomes using local instrumental
variables with an application to changes in college enrollment and wage inequality,” Journal of Economet-
rics, 149, 191-208.

CHEN, Y. AND D. Y. YANG (2019): “The impact of media censorship: 1984 or brave new world?” American
Economic Review, 109, 2294-2332.

CHERNOZHUKOV, V. AND C. HANSEN (2004): “The impact of 401 (k) participation on the wealth distribu-
tion: An instrumental quantile regression analysis,” Review of Economics and statistics, 86, 735-751.

(2005): “An IV model of quantile treatment effects,” Econometrica, 73, 245-261.

DELLAVIGNA, S. AND M. GENTZKOW (2010): “Persuasion: empirical evidence,” Annual Review of Eco-
nomics, 2, 643-669.

DELLAVIGNA, S. AND E. KAPLAN (2007): “The Fox News effect: Media bias and voting,” The Quarterly
Journal of Economics, 122, 1187-1234.

DURRETT, R. (2010): Probability: theory and examples, Cambridge university press.

ENIKOLOPOV, R., M. PETROVA, AND E. ZHURAVSKAYA (2011): “Media and political persuasion: Evidence
from Russia,” American Economic Review, 101, 3253-85.

ENOs, R. D., A. FOWLER, AND L. VAVRECK (2014): “Increasing inequality: The effect of GOTV mobilization
on the composition of the electorate,” The Journal of Politics, 76, 273-288.

FANG, Z. AND A. SANTOS (2019): “Inference on directionally differentiable functions,” The Review of Eco-
nomic Studies, 86, 377-412.

FANG, Z., A. SANTOS, A. M. SHAIKH, AND A. TORGOVITSKY (2020): “Inference for large-scale linear
systems with known coefficients,” arXiv preprint arXiv:2009.08568.

FENG, Q., Q. VUONG, AND H. XU (2019): “Estimation of heterogeneous individual treatment effects with
endogenous treatments,” Journal of the American Statistical Association.

Fu, A., B. NARASIMHAN, AND S. BOYD (2017): “CVXR: An R package for disciplined convex optimiza-
tion,” arXiv preprint arXiv:1711.07582.

GERBER, A. S., D. P. GREEN, AND R. SHACHAR (2003): “Voting may be habit-forming: evidence from a
randomized field experiment,” American journal of political science, 47, 540-550.

GREEN, D. P, A. S. GERBER, AND D. W. NICKERSON (2003): “Getting out the vote in local elections:
Results from six door-to-door canvassing experiments,” The Journal of Politics, 65, 1083-1096.

HECKMAN, J. J. AND E. VYTLACIL (2005): “Structural equations, treatment effects, and econometric policy
evaluation 1,” Econometrica, 73, 669-738.

HUBER, M. AND G. MELLACE (2015): “Testing instrument validity for LATE identification based on in-
equality moment constraints,” Review of Economics and Statistics, 97, 398-411.

27



IMBENS, G. W. AND J. D. ANGRIST (1994): “Identification and Estimation of Local Average Treatment
Effects,” Econometrica, 467-475.

IMBENS, G. W. AND D. B. RUBIN (1997): “Estimating outcome distributions for compliers in instrumental
variables models,” The Review of Economic Studies, 64, 555-574.

JUN, S.J. AND S. LEE (2018): “Identifying the effect of persuasion,” arXiv preprint arXiv:1812.02276.

KEDAGNI, D. AND I. MOURIFIE (2020): “Generalized instrumental inequalities: testing the instrumental
variable independence assumption,” Biometrika, 107, 661-675.

KM, W., K. KWON, S. KWON, AND S. LEE (2018): “The identification power of smoothness assumptions

in models with counterfactual outcomes,” Quantitative Economics, 9, 617-642.
KitaGawA, T. (2015): “A test for instrument validity,” Econometrica, 83, 2043-2063.

LANDRY, C. E., A. LANGE, J. A. LisT, M. K. PRICE, AND N. G. RUPP (2006): “Toward an understanding
of the economics of charity: Evidence from a field experiment,” The Quarterly journal of economics, 121,
747-782.

MACHADO, C., A. M. SHAIKH, AND E. J. VYTLACIL (2019): “Instrumental variables and the sign of the
average treatment effect,” Journal of Econometrics, 212, 522-555.

MANSKI, C. (1997): “Monotone Treatment Response,” Econometrica, 65, 1311-1334.

MANSKI, C. F. AND ]J. V. PEPPER (2000): “Monotone Instrumental Variables: With an Application to the
Returns to Schooling,” Econometrica, 68, 997-1010.

MOGSTAD, M., A. SANTOS, AND A. TORGOVITSKY (2018): “Using instrumental variables for inference
about policy relevant treatment parameters,” Econometrica, 86, 1589-1619.

MOURIFIE, I. AND Y. WAN (2017): “Testing local average treatment effect assumptions,” Review of Economics
and Statistics, 99, 305-313.

OKUMURA, T. AND E. Usul (2014): “Concave-monotone treatment response and monotone treatment se-
lection: With an application to the returns to schooling,” Quantitative Economics, 5, 175-194.

PEARL, J. (1999): “Probabilities of causation: three counterfactual interpretations and their identification,”
Synthese, 121, 93-149.

ROMANO, J. P. AND A. M. SHAIKH (2012): “On the uniform asymptotic validity of subsampling and the
bootstrap,” The Annals of Statistics, 40, 2798-2822.

RusstLL, T. M. (2021): “Sharp bounds on functionals of the joint distribution in the analysis of treatment
effects,” Journal of Business & Economic Statistics, 39, 532-546.

STAIGER, D. AND J. H. STOCK (1997): “Instrumental Variables Regression with Weak Instruments,” Econo-
metrica: Journal of the Econometric Society, 557-586.

TORGOVITSKY, A. (2019): “Nonparametric inference on state dependence in unemployment,” Econometrica,
87, 1475-1505.

28



VAART, A. W. AND J. A. WELLNER (1996): “Weak convergence,” in Weak convergence and empirical processes,
Springer, 16-28.

VUONG, Q. AND H. XU (2017): “Counterfactual mapping and individual treatment effects in nonseparable
models with binary endogeneity,” Quantitative Economics, 8, 589-610.

VYTLACIL, E. (2002): “Independence, monotonicity, and latent index models: An equivalence result,”
Econometrica, 70, 331-341.

WANG, L., J. M. ROBINS, AND T. S. RICHARDSON (2017): “On falsification of the binary instrumental
variable model,” Biometrika, 104, 229-236.

YAMAMOTO, T. (2012): “Understanding the past: Statistical analysis of causal attribution,” American Journal
of Political Science, 56, 237-256.

29



Appendix A A System of Equation for the Binary IV Model with Mono-
tone Treatment Response
Assumption 2.1 implies the following system of linear equations:
AgbsP = b,

where Agps, p, and b are defined as the following with A being a measurable set:

1 101100 0 0]
100100000
001000000
01 10000TO00
Aobs = ’

000O0O0O0OT1T10
000O0O0GOT1UO0O0
000001001
0000110 1 1}
[PP[Y;(0) =0,Y;(1) =0,T;(0) =0, T;(1) = 0,X; € A]]
P[Y;(0) =0,Y;(1) =0,T;(0) =0,T;(1) =1, X; € A]
P[Y;(0) =0,Y;(1) =0,T;(0) = 1,T;(1) = 1, X; € A]
P[Y;(0) =0,Y;(1) =1, T;(0) =0, T;(1) = 0, X; € A]

p= |P[Y;(0) =0,Y;(1) =1,T;(0) =0,T;(1) =1, X; € A]|,
P[Y;(0) =0,Y;(1) =1,T;(0) = 1,T;(1) = 1, X; € A]
P[Y;(0) =1,Y;(1) =1,T;(0) =0, T;(1) = 0, X; € A]
P[Y;(0) =1,Y;(1) =1, T;(0) =0, T;(1) = 1, X; € A]
[P[Y;(0)=1,Y(1) =1,T;(0) =1, T;(1) =1, X; € Al
(P[Y;=0,T;=0,X; € A| Z =0]|
P[Y;=0,T;=0,X; € A| Z; = 1]
PlY;=0,T;=1,X; € A| Z; =0

b PlY;=0,T,=1,X; € A| Z; =1]
PlY;=1,T;=0,X; € A| Z; =0
PlY;=1,T,=0,X; € A| Z; = 1]
PlY;=1,T,=1,X; € A| Z =0
_H)[Yi:1,Ti:1,X,‘€A|Z,—1]

Appendix B Implementing the Test in Section 7.2
Recall that in Section 7.2, the test statistic is given by:

T, = _inf [ Agesp — B/
n pz(}%pzl\/ﬁ obsP
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To compute the test statistic, we choose the ¢, norm. Thus, the minimizer to the minimization problem in
the test statistic can be obtained by solving:
min | |A -b ’ ‘
P ‘ ’ obsP 2
dim(p)
subjecttop > 0, Z pi=1,
i=1
where the inequality in the constraint is interpreted to hold component-wise. Note that the minimizer of
the optimization problem above is equivalent to the minimizer of the following minimization problem:
mmp A bs AobsP — 2pT Aobsb
dim(p)
subjecttop >0, ) pi=1,

i=1

The minimization problem above is a convex problem (Boyd and Vandenberghe, 2004), and can be effi-
ciently solved by using CVXR package in R (Fu et al., 2017).

Appendix C Proof of the Main Results

C.1 Proof of Lemma4.1

For P[Y;(t) = y|T;(1) > T;(0)], where y € {0,1} and ¢ € {0, 1}, we have the following:

PIY;(t) = y|T:(1) > T;(0)] = P[YAQ[;(}{,) T;-<1> E(E)T(Oﬁ 0]

:]P[Y() y, Ti(1) =1,T;(0) = 0]
E[T;|Z; = 1] - E[T,|Z: = 0]

where the the first equality uses IV monotonicity in Assumption 2.1, the second equality uses Lemma 2.1
in Abadie (2003).

For P[Y;(t) =y, Ti(1) =1, T;(0) = 0], withy € {0,1} and t € {0,1}:

PYi(t) =y, T;(1) =1, T;(0) = 0]

=PY(t) =y Ti(t) = t] = P[Yi(t) =y, Ti(t) = t, T;(1 — t) = {]
=P[Yj(t) =y, Ti(t) = t] = P[Yi(t) =y, Ti(1 - f) t]

=PYi(t) =y, Ti(t) = t|Z; =t] = P[Yj(t) =y, T;(1 - t) = t{Z; = 1 — ]
=PlY;=y Ti=tZ =t]-PY; =y, Ti=tZ;=1-1|,

where the first and the second equality uses IV monotonicity in Assumption 2.1, the third equality uses IV
exogeneity in Assumption 2.1. Now, the desired results follow immediately.
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C.2 Proof of Lemma4.2

0) = 1T;(1) >
The desired result follows immediately from Lemma 4.1 that

By the monotone treatment response assumption in Assumption 2.1, P[Y;(1) = 1,Y;(
Ti(0)] = P[Y;(0) = 1T;i(1) > Ti(0)].
P[Y;(0) = 1|T;(1) > T;(0)] is identifiable.

The result for P[Y;(1) = 0,Y;(0) = 0|T;(1) > T;(0)] can be derived analogously by observing that
monotone treatment response assumption in Assumption 2.1 implies [Y;(1) = 0,Y;(0) = 0] = [Y;(1) = 0]

and using Lemma 4.1.

For P[Y;(1) = 1,Y;(0) = 0|T;(1) > T;(0)], note that the monotone treatment response assumption
in Assumption 2.1 implies P[Y;(1) = 1,Y;(0) = 0|T;(1) > T;(0)] = E[Y;(1) — Y;(0)|T;(1) > T;(0)]. By
Theorem 1 in Imbens and Angrist (1994), E[Y;(1) — Y;(0)|T;(1) > T;(0)] is identifiable under the IA IV
assumptions.

C.3 Proof of Proposition 4.1

Note that the marginal distribution of potential outcomes among compliers is point identified (Imbens
and Rubin, 1997; Abadie, 2003). Moreover, we can rewrite the marginal distribution of potential outcomes

among compliers as a system of linear equations of the joint distribution of potential outcomes among

compliers:

11100 0] 1 |PYi(0) = —1|Ti(1) > T;(0)]

0001 1 of [FHO="1Y)=—LM)>TON - py 0 o7, 10
P[Y;(0) = —1,Y;(1) = 0|T;(1) > T;(0)]

000001 P[Y;(0) = 1|T;(1) > T;(0)]
P[Y;(0) = —1,Y;(1) = 1|T;(1) > T;(0)]

100000 = |P[Y;(1) = -1|T;(1) > T;(0)] | ,
P[Y;(0) = 0,Y;(1) = 0|T;(1) > T;(0)]

010100 P[Y;(1) = 0[T;(1) > T;(0)]
P[Y;(0) = 0,Y;(1) = 1|T;(1) > T;(0)]

001011 P[Yi(1) = 1|Ti(1) > T;(0)]

111 1 1 1| PO =1Y0)=1TQ)> T;(0)] .

where the rank of the coefficient matrix is five. Thus, there is no unique solution to the system of linear
equations above.

C.4 Proof of Theorem 5.1
For P[X; € A|Y;(0) =0, T;(1) > T;(0)], where A being a measurable set:

P[X; € AlY;(0) =0, Ti(1) > T;(0)
]P[Xi € A,Yi(()) = O,T,'(l) >

g
~—~

o
=

IP[Y;(0) =0, T;(1) > T;(0)
_ P[X; € A,Y(0) =0,T(1) > T;(0)]

P[Y; =0,T; =0|Z; =0] —P[Y; =0, T; = 0|1Z; = 1]

PX;€ AY;=0,T;=0/Z; =0 —P[X; € A, Y; =0,T; =0|Z; = 1]
N P[Y; =0,T; =0|Z; =0] —P[Y; =0,T; = 0|Z; = 1] ’
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where the first equality uses the Bayes’ Theorem, the second equality uses Corollary 4.1, the third equality
follows by using the identical argument in Corollary 4.1 under Assumption 2.1.

The identification of the conditional distribution of X; follows immediately by observing that {(—co, x] :
x € R} is measurable.

The identification of the conditional expectation of g(X;) follows immediately by observing that:

E[g(X)[¥i(0) = 0,Ti(1) > Ti(0)] = [ g(X)AP(X,{Y,(0) = 0, T;(1) > T;(0)).

C.5 Proof of Proposition 5.1

The desired results follow immediately by using the identical arguments in Theorem 5.1.

C.6 Proof of Proposition 5.2

First, note that the IV independence assumption in Assumption 2.1 implies (Y;(1),Y;(0), T;(1), T;(0)) L
Zi‘Xi- For IP[XZ €A, YI(O) =0, Tl(l) > TI(O)]

P[X; € A,Y;(0) = 0,T;(1) > T;(0)]
= P[Y;(0) = 0|X; € A, T;(1) > T;(0)]IP[T;(1) > T;(0)|X; € AJP[X; € A].

For P[T:(1) > T:(0)|X; € Al:
]P[Tl(l) > TZ(O)|XZ S A] = ]E[Tl|Zl = 1/Xi S A] —]E[Tl-\Zl- = O,Xl' S A],

which follows from Lemma 3.1 in Abadie (2003).

For P[Y;(0) = 0|X; € A, T;(1) > T;(0)]:

P[Y;(0) = 0|X; € A, T(1) > T;(0)]
= 1-P[Y;(0) = 1|X; € A, T;(1) > T;(0)]
=1-E[Y;(0)|X; € A, T;(1) > T;(0)]
1
=1 B S Ty, € 4] ¢ ElRoYilXi € Al
1

—1- E[xoYi|X; € A
Pl =1X; €A, Z =1 P =1X; € A, Z = 0] [o¥;|X; € 4]

where the third equality follows from Theorem 3.1 part (b) in Abadie (2003) by defining g(Y;(0)) = Y;(0).
For ]P[Xl S A|Yl(0) =0, Tz(l) > TI(O)}
P[X; € AlY;(0) =0, Ti(l) > T;(0)]

_P[X; € A, Yi(0
P[Y;(0) =
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. ]P[Xl' S A] X (]P[Tl' = 1|Xi €A Z = 1] —]P[Ti = 1|X,' €AZ = O] —IE[K()YZ'|XZ' S A])
IP[Y;(0) = 0, Ti(1) > T;(0)]

P[X; € Al x (P[T; = 1|X; € A, Z = 1] = P[T; = 1|X; € A, Z; = 0] — E[xYi|X; € A])

P[Y; =0,T; = 0Z; = 0] — P[Y; = 0, T; = 0| Z; = 1] ’

where the last equality uses Lemma 4.1.

C.7 Proof of Proposition 5.3
First note that for ]P[XZ' €AY, =0T, = O‘Zi = 0] — ]P[Xi €AY, =0T = O|Zi = 1]:

P[X; € A,Y; =0,T; =0|Z; = 0] — P[X; € A,Y; =0,T; = 0|Z; = 1]
= ]P[Y, =0,T, = O|Zi =0,X; € A]]P[Xi S A‘Zi = 0] —]P[Yi =0T, = O|Z,' =1X; € A]IP[XZ' S A|Zl' = 1]
= (]P[Yl =0T = 0|ZZ =0,X; € A} —]P[Yi =0T = O|ZZ =1,X; € A]) X ]P[XZ S A],

where the second equality uses the assumption that X; 1L Z;.

Thus, to show the numerical equivalence between the two formulas in Theorem 5.1 and Proposition 5.2,
it suffices to show the equivalence between the numerators in the two formulas:

P[T;=1|X; € A, Z =1] - P[T, = 1|X; € A, Z; = 0] — E[xoY;|X; € A]
= ]P[Yi =0T, = 0|Zi =0,X; e A] —]P[Yi =0T = 0|Zi =1,X; € A]

Observe that for P[T; = 1|X; € A, Z; = 1] —P[T; = 1|X; € A, Z; = 0] — E[xoY;|X; € Al:

P[T; =1|X; € A, Z; =1] —P[T; = 1|X; € A, Z; = 0] — E[x Y| X; € A]

=P[T; =0|X; € A, Z; =0] = P[T; = 0|X; € A, Z; = 1] — E[xoY;|X; € A]

=P[Y;=1,T,=0|X; € A, Z; =0+ P[Y; =0,T; = 0|X; € A, Z; = 0]
—PlY;=1,T;=0/X; € A, Z; =1 —P[Y; =0,T; = 0|X; € A, Z; = 1] — E[xY;|X; € A]

We now proceed to simplify E[xoY;|X; € A]:

E[xoY|X; € Al

= E[xoY;|X; € A, T; =0,Z; = 0] x P[T; = 0,Z; = 0/X;]
+E[Yi|X; € A, T, =0,Z; = 1] x P[T; = 0, Z; = 1|X|]
T E[koYi|X; € AT, =1,Z; =0 x P[T; = 1,Z; = 0|X]
+E[kYi|X; € AT, =1,Z =1 x P[T, = 1, Z; = 1|X|]

= E[xY;|X; € A, T; =0,Z; = 0] x P[T; = 0,Z; = 0/ X;]
+E[kYi|X; € A, T, =0,Z; = 1] x P[T; = 0, Z; = 1|X;]

1
1
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1
N ]P[Zl’ = 0|X1' S A}
_ 1
]P[Zl' = 1|X,’ S A]
= ]P[Yi =1T = 0|Zi =0,X; € A] —]P[Yi =1T = 0|Zi =1,X; € A]

X ]P[Yl = 1|XZ e AT =027 :O} X ]P[TZ =0,Z = 0|Xl S A]

xPlY; =1|X; € A, T; =0,Z; = 1] x P[T; = 0,Z; = 1|X; € A

where the second equality uses the fact that T; = 1 implies xy = 0, the fourth inequality uses IV indepen-
dence assumption, the fifth equality uses the Bayes rule.

Now the desired equivalence result follows immediately.

C.8 Proof of Theorem 5.2

For P[X; € AlY;(1) = Y;(0)

= 1,T;(1) > T;(0)]. Note that the monotone treatment response assumption
in Assumption 2.1 implies [Y;(1) = ) =

Y;(0) = 1] = [Y;(0) = 1]. Now, the desired result follows immediately

from Proposition 5.1.

Similarly, by Proposition 5.1 and the fact that [Y;(1) = Y;(0) = 0] = [Y;(1) = 0] which is implied by
the monotone treatment response assumption in Assumption 2.1, the desired result for P[X; € A|Y;(1) =
Y;(0) =1, T;(1) > T;(0)] follows immediately.

For P[X; € AlY;(1) =1,Y;(0) = 0, T;(1) > T;(0)], we have the following;:

PIX; € AlY;(1) = 1,Y;(0) = 0, T;(1) > T;(0)]
~ P[X; € AY;(1) =1,Y(0) =0, T;(1) > T;(0)]
[ ( ) = erl(O) =0, 1(1) > Tl(o)]
P[X; € A Y;(1) =1,Y;(0) =0,T;(1) > T;(0)]
E[Yj[Z; = 1] - E[Y;|Z; = 0] '

where the second equality uses Theorem 1 in Imbens and Angrist (1994). For P[X; € A, Y;(1) = 1,Y;(0) =
0, Tl(1> > TZ(O)]

P[X; € A,Yi(1) = 1,Y(0) = 0, T;(1) > T;(0)
= E[I{X; € A}(Yi(1) - Y;(0) )
= E[{X; € AHT:(1)Y;(1) ))Yi(0)
—E[{X; € A}(T;(0)Yi(1) + (1 - T;(0))Y;(0)]
= E[I{X; € A}HT:(1)Yi(1) + ( )Yi(0)|Z;
—E[{X; € A}(T;(0)Yi( (0))Yi(
=P[X; €AY, =12, =1 -P[X; € A,Y; = 1|Z; = 0],

where the third equality uses the assumption 2 in Assumption 2.1.
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C.9 Proof of Proposition 5.4
For E[g(X;)|Yi(t) =y, T;(1) = T;(0) = t], where t € {0,1} and y € {0, 1}, we have the following:

E[g(X)|Yi(t) =y, Ti(1) = T;(0) = t] = E[g(X)[Yi(t) =y, Ti(1 - t) = 1]
E[g(X)|Yi(t) =y, Ti(1—t)=t,Z; =1 1]

Elg(X)|Yi =y, Ti=tZi=1-1,

where the first equality uses the IV monotonicity assumption in Assumption 2.1, the second equality uses
the IV exogeneity assumption in Assumption 2.1.

C.10 Proof of Proposition 6.1

Let [E,, denote sample average. Then, for 31, we have::

where the second line uses the Weak Law of Large Numbers and the continuous mapping theorem. pro-
vided that P[Z; = 1] > 0. Similarly, we can show that j3; L B2. Now the desired result follows immediately
from the continuous mapping theorem provided S, is bounded away from 0.

C.11 Proof of Proposition 6.2

Note that our estimator for P[X; € A|Y;(0) = 0, T;(1) > T;(0)] is a function of (61, 6,), where 6; and 6, are
the regression coefficients of Z; from regressing 1{X; € A,Y; = 0,T; = 0} and 1{Y; = 0,T; = 0} on Z;,
respectively. By the standard application of the delta method, we know that:

0 0
a2 = ()] 2 G,
0> )
where 6; and 6, are sample analogs of 6; and 6,, and Gy is a normal distribution. Furthermore, we assume

that B, is bounded away from 0, thus, ¢(61,62) = % is differentiable at (B1, B2). Now the desired result
follows immediately from applying Theorem 3.1 in Fang and Santos (2019).

C.12 Proof of Claim 7.1

Note that among compliers, T; = Z;. Now the desired result follows immediately by observing that Z; is

exogenous assumed in Assumption 2.1 and using Theorem 6 in Jun and Lee (2018).
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C.13 Proof of Theorem 7.1

Recall the formulas of the approximated fpg and the identified 6}, from Theorem 6 in Jun and Lee (2018)

G P[Y; = 1|Z; = 1] = P[Y; = 1|Z; = 0]

DK™ P[T, =12, =1] = P[T; = 1|Z; = 0]) x (1 = P[Y; = 1|Z; = 0])
PlY; =1|Z; =1] - P[Y; =1|Z; =]

i=0,T;=0]Z;=0] -P[Y; =0,T; =0|Z; = 1]

thus, Opg = Bjocal if and only if:

Glocal = ]P[

(P[T; = 1|1Z; = 1] = P[T; = 1|Z; = 0]) x P[Y; = 0|Z; = 0]
=P[Y; =0,T; =0|Z; =0] - P[Y; =0, T; = 0|Z; = 1]. (6)

Consider the first case in which there is non-compliance in the control group, i.e., P[T; = 1|Z; = 1] = 1.
In this case, there is no never-taker. Then, for the denominator of Op:

(P[T, = 1/Z; = 1] — PIT, = 1/Z; = 0]) x (1 — P[Y; = 1/Z; = 0])
— (1-P[T, = 1/Z; = 0) x (P[Y; = 0[Z; = 0))
= P[T; = 0|Z; = 0] x

(P[Y; =0,T; = 0|1Z; = 0] + P[Y; = 0, T; = 1|Z; = 0])
= P[T;(0) = 0] x (P[Y;(0) = 0, T;(0) = 0] + P[Y;(1) = 0, T;(0) = 1]),

where the first equality uses the assumption that there is non-compliance in the control group. For the
denominator of fpy, by the assumption that there is non-compliance in the control group

P[Y; =0,T; =0]|Z; = 0] — P[Y; =0,T; = 0|Z; = 1]
= H)[Yz =0,T; = 0|Zi = ]
= P[Y;(0) =0, T;(0) = 0]
Thus, by Equation 6, fpk = Oloca if and only if:
[ i(0) = 0,T;(0) = 0] = IP[T;(0) = 0] x (P[Y;(0) = 0, T;(0) = 0] + P[¥;(1) = 0, T;(0) = 1])
IP[T;(0 ) 1] x P[Y;(0) = 0, T;(0) = 0] = IP[T;(0) = 0] x P[Y;(1) = 0, T;(0) = 1]
IP[Y;(0) = 0|T;(0) = 0] = P[Y;(1) = 0|T;(0) = 1]

Consider the second case in which there is non-compliance in the treatment group, i.e., P[T; = 0|Z; =
0] = 1. In this case, there is no always-taker. Then, for the denominator of fpk:

(P[T; =1|Z; = 1] = P[T; = 1|Z; = 0]) x (1 —P[Y; = 1|Z; = 0])
=P[T; =1|Z; = 1] x P[Y; =0, T; = 0|Z; = 0]

=P[Y; =0,T, =0|Z; =0 — P[T; = 0/Z; = 1] x P[Y; =0, T; = 0|Z; = 0],

where the first equality uses the assumption that there is non-compliance in the treatment group. Thus, by
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Equation 6, fpk = 6jocal if and only if:

]P[Yl =0,T, = 0|Zi = 0] —IP[Yi =0T, = 0|Zi = 1]
=P[Y; =0,T; =0[Z; =0] - P[T; = 0|Z; = 1] x P[Y; =0, T; = 0|Z; = 0]

[
& P[Y(0) = 0,T;(1) = 0] = P[Ty(1) = 0] x P[¥;(0) = 0, T;(0) = 0]
[¥;(0) = 0|Ty(1) = 0] = P[¥;(0) = 0]

where the third line uses the assumption that P[T;(0) = 0] = 1.

C.14 A Glivenko-Cantelli Theorem for Conditional Cumulative Distribution Func-
tion

In fact, we can strengthen the statement in Remark 6.2 from convergence in probability to almost sure

convergence:

sup [P[X; < x]Y;(0) =0, T;(1) > T;(0)] — P[X; < x|Y;(0) =0, T;(1) > T;(0)]| = 0.

x€R
Moreover, the uniform convergence result in Remark 6.2 follows immediately from the uniform conver-
gence of the empirical conditional cumulative distribution function. Thus, we only provide a proof for the

uniform convergence of the empirical conditional cumulative distribution function in this section.

Theorem C.1. Consider a pair of random variable (X;, Z;) : (Q, F) — (R?, c(B(R?))), where F is a sigma
field on the outcome space ), and ¢(B(IR?)) denotes the Borel sigma algebra on R?. Let A € o(B(R?))
with P[Z; € A] # 0. Then:

sup [P[X; < x[Z; € A] - P[X; < x|Z; € A]| 20,
xeR

where P[X; < x|Z; € A] = % with [E,, denotes sample average.
Proof. We first show that sup, . [Ex[X; < x,Z; € A] - P[X; < x,Z; € A 2%,0. For1 < j < k—1, let
xjx = inf{y : P[X; < x,Z; € A] > {P[Z; € A]}. Thus, by the Strong Law of Large Numbers, there exists
N such that if n > N, then:

[Eq[Z; € A] - P[Z; € A]| < @

P|Z; € A
’]En[Xi <xxZi € A]-P[Z; € A]’ < %

IP[ZZ‘ S A]

’]En[Xi < Xj ks Z; € A] - ]P[Xl' < x]-,kZi S A}‘ < K ,

for1 <j < k—1. With xg; = —o0 and x; ; = oo, then the last two inequalities hold for j = 0 and j = k.
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For x € (xj_ 14 Xjx) with1 <j<kandn > Ny

]P[Zl' S A]
k
< IE[Xi < x,Zi c A] +

IP[ZZ' S A]
k

> ]E[Xi <x,7Z; € A] —

Eu[X; <x,Z;i € A] <En[X; < xjx, Z; € A] < E[X; < xj, Z; € Al +

2P[Z; € Al
k

Eu[Xi <x,Zi € A 2 En[Xi < xj14,Zi € A] 2 E[X; < X514, Zi € A] —

2P[Z; € Al
k

2P[Z; € Al

<E[X; <xj_1x Zi € Al + ? ,

2P[Z; € Al

> E[X; < xjp, Zi € Al - p ,

thus, we conclude that sup, g [Ex[X; < x,Z; € A] = P[X; < x,Z; € A]| 2% 0.

For sup, g |P[X; < x|Z; € A] - P[X; < x|Z; € A]:

sup |P[X; < x|Z; € A] - P[X; < x|Z; € A]|
xeR
E,[1{X; < x,Z; € A}]
= sup
R E,[1{Z; € A}]

Eu1{X; <xZ € A}] EJUX <xZ €A}  Eafl{X; <x2Z c A}

~P[X; < x|Z € A]‘

= ,s(];]l}z ]En[]l{zl' S AH ]P[{Zi c A}] + ]P[{Zi c A}] —]P[Xi < X|ZZ- c A]
< Ea[l{X; < x,Zi € A}] Ea[l{Xi S x,Z; € A}]
N Jscléllg ]En[]l{zi S AH - ]P[{Zi c A}] ‘
E,[1{X; < x,Z; € A}]
+§‘§£ P[{Z; € A}] —-P[X; <x|Z; € A]’
1 1
B ‘]En 0(Z c 4] Pz c A})| SR [BnlliXi < x, Z; € AY]]
+ ]P[leelﬂiléﬂlz |E.[1{X; <x,Z € A} —P[X; < x,Z; € A]|

1 1

1
< L < . _ L < .
< ’Enm{zi cA)  PlZ € AY] ’ TPz e 4 SR BN < 3 Zi € A}~ PIX; < 3 2 € A

a.s. 0’

where the first inequality uses the triangle inequality, the second inequality uses the fact that:

sup |[E,[1{X; <«x,Z; € A}]| <1,
xeR

which holds by construction, and the last line uses the Strong Law of Large Numbers and the continuous
mapping theorem. B
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